【題目】如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,ABOAx軸于點B,且OA=AB.

(1)求雙曲線的解析式;

(2)求點C的坐標,并直接寫出y1<y2x的取值范圍.

【答案】(1);(2)C(﹣1,﹣4),x的取值范圍是x<﹣10<x<2.

【解析】1)作高線AC,根據(jù)等腰直角三角形的性質(zhì)和點A的坐標的特點得:x=2x﹣2,可得A的坐標,從而得雙曲線的解析式;

(2)聯(lián)立一次函數(shù)和反比例函數(shù)解析式得方程組,解方程組可得點C的坐標,根據(jù)圖象可得結(jié)論.

(1)∵點A在直線y1=2x﹣2上,

∴設(shè)A(x,2x﹣2),

AACOBC,

ABOA,且OA=AB,

OC=BC,

AC=OB=OC,

x=2x﹣2,

x=2,

A(2,2),

k=2×2=4,

(2),解得:,,

C(﹣1,﹣4),

由圖象得:y1<y2x的取值范圍是x<﹣10<x<2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知頂點為C(0,﹣3)的拋物線y=ax2+b(a≠0)與x軸交于A,B兩點,直線y=x+m過頂點C和點B.

(1)求m的值;

(2)求函數(shù)y=ax2+b(a≠0)的解析式;

(3)拋物線上是否存在點M,使得∠MCB=15°?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿直線AE折疊,頂點D恰好落在BC邊上F點處,已知AD10cm,BF6cm

(1)DE的值;

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩個全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點E落在AB上,DE所在直線交AC所在直線于點F.

(1)求證:AF+EF=DE;

(2)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角α,且0°<α<60°,其它條件不變,請在圖②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結(jié)論是否仍然成立;

(3)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認為(1)中猜想的結(jié)論還成立嗎?若成立,寫出證明過程;若不成立,請寫出AF、EF與DE之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ABC中,AB=AC=BC=10厘米,M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度是1厘米/秒的速度,點N的速度是2厘米/秒,當(dāng)點N第一次到達B點時,M、N同時停止運動.

1M、N同時運動幾秒后,M、N兩點重合?

2M、N同時運動幾秒后,可得等邊三角形AMN

3M、NBC邊上運動時,能否得到以MN為底邊的等腰AMN,如果存在,請求出此時M、N運動的時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,∠ACB=90°,點M是斜邊AB的中點,MDBC,且MD=CM,DEAB于點E,連結(jié)AD、CD.

(1)求證:△MED∽△BCA;

(2)求證:△AMD≌△CMD;

(3)設(shè)△MDE的面積為S1,四邊形BCMD的面積為S2,當(dāng)S2=S1時,求cosABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,……按此規(guī)律,則第50個圖形中面積為1的正方形的個數(shù)為( 。

A. 1322 B. 1323 C. 1324 D. 1325

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在數(shù)學(xué)活動課中,小明剪了一張△ABC的紙片,其中∠A=60°,他將△ABC折疊壓平使點A落在點B處,折痕DE,DAB上,EAC上.

(1)請作出折痕DE;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)

(2)判斷△ABE的形狀并說明;

(3)若AE=5,BCE的周長為12,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要在一塊三角形空地上種植花草,如圖所示,AC13 米、AB14 米、BC15 米, 若線段 CD 是一條引水渠,且點 D 在邊 AB 上.已知水渠的造價每米 150 元.問:點 D 與點 C 距離多遠時,水渠的造價最低?最低造價是多少元?

查看答案和解析>>

同步練習(xí)冊答案