【題目】殘缺的圓形輪片上,弦AB的垂直平分線交弧AB于點(diǎn)C,交弦AB于點(diǎn)D.測(cè)得AB=24cm,CD=8cm.求這個(gè)圓的半徑.

【答案】解:設(shè)這個(gè)圓的圓心是O,
連接OA,設(shè)OA=x,AD=12cm,OD=(x﹣8)cm,
則根據(jù)勾股定理列方程:
x2=122+(x﹣8)2 ,
解得:x=13.
答:圓的半徑為13cm.

【解析】設(shè)這個(gè)圓的圓心是O,連接OA,設(shè)OA=x,AD=12cm,OD=(x﹣8)cm,根據(jù)勾股定理可得x2=122+(x﹣8)2 , 解之即可.
【考點(diǎn)精析】本題主要考查了線段垂直平分線的性質(zhì)和垂徑定理的推論的相關(guān)知識(shí)點(diǎn),需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧B、弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧C、平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧;推論2 :圓的兩條平行弦所夾的弧相等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正比例函數(shù)y1=k1x(k1>0)與反比例函數(shù)y2= (k2>0)部分圖象如圖所示,則不等式k1x> 的解集在數(shù)軸上表示正確的是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列幾個(gè)命題:①若兩個(gè)實(shí)數(shù)相等,則它們的平方相等;②若三角形的三邊長(zhǎng)a,b,c滿足(a-b)(a+b)+c2=0;則這個(gè)三角形是直角三角形;有兩邊和一角分別相等的兩個(gè)三角形全等.其中是假命題的有_________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四個(gè)均由十六個(gè)小正方形組成的正方形網(wǎng)格中,各有一個(gè)三角形ABC,那么這四個(gè)三角形中,不是直角三角形的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,lA、lB分別表示A步行與B騎車(chē)在同一路上行駛的路程S與時(shí)間t的關(guān)系.

(1)B出發(fā)時(shí)與A相距_____千米.

(2)走了一段路后,自行車(chē)發(fā)生故障進(jìn)行修理,所用的時(shí)間是____小時(shí).

(3)B出發(fā)后_____小時(shí)與A相遇.

(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式.(寫(xiě)出計(jì)算過(guò)程)

(5)請(qǐng)通過(guò)計(jì)算說(shuō)明:若B的自行車(chē)不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),何時(shí)與A相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12m,寬是4m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點(diǎn)C到墻面OB的水平距離為3m時(shí),到地面OA的距離為 m.

(1)求該拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車(chē)載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車(chē)道,那么這輛貨車(chē)能否安全通過(guò)?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形ABC中,AB=AC,D,E分別為邊AB,AC上的點(diǎn),DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,則∠DEA=( 。

A. 40° B. 50° C. 60° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對(duì)應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長(zhǎng)為(

A.4
B.6
C.3
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案