【題目】計算:|﹣1|+ +(3.14﹣π)0﹣4cos60°.

【答案】解:原式=1+(﹣3)+1﹣4×
=1﹣3+1﹣2
=﹣3.
【解析】根據(jù)去絕對值法則和負整數(shù)指數(shù)冪以及零指數(shù)冪的運算法則化簡,再由特殊角的銳角三角函數(shù)計算即可.
【考點精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.

(1)求m的值及該拋物線對應的解析式;
(2)P(x,y)是拋物線上的一點,若SADP=SADC , 求出所有符合條件的點P的坐標;
(3)點Q是平面內(nèi)任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計了這15人某月的加工零件個數(shù):

每人加工零件個數(shù)

540

450

300

240

210

120

人數(shù)

1

1

2

6

3

2

(1)寫出這15人該月加工零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù).

(2)假如生產(chǎn)部負責人把每位工人的月加工零件個數(shù)定為260,你認為這個定額是否合理?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,0),(5,0),(3,﹣4).

(1)求該二次函數(shù)的解析式;
(2)A、B為直線y=﹣2x﹣6上兩動點,且距離為2,點C為二次函數(shù)圖象上的動點,當點C運動到何處時△ABC的面積最?求出此時點C的坐標及△ABC面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,B,C,D是⊙O上的四點,∠BAC=∠CAD,P是線段CD延長線上一點,且∠PAD=∠ABD.

(1)請判斷△BCD的形狀(不要求證明);
(2)求證:PA是⊙O的切線;
(3)求證:AP2﹣DP2=DPBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:⊙O的直徑為3,線段AC=4,直線AC和PM分別與⊙O相切于點A,M.

(1)求證:點P是線段AC的中點;
(2)求sin∠PMC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應“美麗河池 清潔鄉(xiāng)村 美化校園”的號召,紅水河中學計劃在學校公共場所安裝溫馨提示牌和垃圾箱.已知,安裝5個溫馨提示牌和6個垃圾箱需730元,安裝7個溫馨提示牌和12個垃圾箱需1310元.
(1)安裝1個溫馨提示牌和1個垃圾箱各需多少元?
(2)安裝8個溫馨提示牌和15個垃圾箱共需多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,OH⊥AB于點H,點P是優(yōu)弧上一點,若AB=2 ,OH=1,則∠APB的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=﹣x+2的圖象與x軸,y軸分別交于A、B兩點,以AB為腰,作等腰RtABC,則直線BC的解析式為( 。

A. y=x+2 B. y=﹣x+2 C. y=﹣x+2 D. y=x+2

查看答案和解析>>

同步練習冊答案