【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,0),(5,0),(3,﹣4).

(1)求該二次函數(shù)的解析式;
(2)A、B為直線y=﹣2x﹣6上兩動點,且距離為2,點C為二次函數(shù)圖象上的動點,當點C運動到何處時△ABC的面積最小?求出此時點C的坐標及△ABC面積的最小值.

【答案】
(1)

解:∵點(1,0),(5,0),(3,﹣4)在拋物線上,

解得

∴二次函數(shù)的解析式為:y=x2﹣6x+5.


(2)

解:

設直線y=﹣2x﹣6與x軸,y軸分別交于點M,點N,

令x=0,得y=﹣6;令y=0,得x=﹣3

∴M(﹣3,0),N(0,﹣6),

∴OM=3,ON=6,由勾股定理得:MN=3 ,

∴tan∠MNO= = ,sin∠MNO= =

設點C坐標為(x,y),則y=x2﹣6x+5.

過點C作CD⊥y軸于點D,則CD=x,OD=﹣y,DN=6+y.

過點C作直線y=﹣2x﹣6的垂線,垂足為E,交y軸于點F,

在Rt△CDF中,DF=CDtan∠MNO= x,CF= = = x.

∴FN=DN﹣DF=6+y﹣ x.

在Rt△EFN中,EF=FNsin∠MNO= (6+y﹣ x).

∴CE=CF+EF= x+ (6+y﹣ x),

∵C(x,y)在拋物線上,∴y=x2﹣6x+5,代入上式整理得:

CE= (x2﹣4x+11)= (x﹣2)2+ ,

∴當x=2時,CE有最小值,最小值為

當x=2時,y=x2﹣6x+5=﹣3,∴C(2,﹣3).

△ABC的最小面積為: ABCE= ×2× =

∴當C點坐標為(2,﹣3)時,△ABC的面積最小,面積的最小值為


【解析】(1)利用待定系數(shù)法求出拋物線的解析式;(2)△ABC的底邊AB長度為2,是定值,因此當AB邊上的高最小時,△ABC的面積最。缃獯饒D所示,由點C向直線y=﹣2x﹣6作垂線,利用三角函數(shù)(或相似三角形)求出高CE的表達式,根據(jù)表達式求出CE的最小值,這樣問題得解.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:| ﹣2|+20100﹣(﹣ 1+3tan30°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y= x+1與拋物線y=ax2+bx﹣3交于A,B兩點,點A在x軸上,點B的縱坐標為3.點P是直線AB下方的拋物線上一動點(不與A,B重合),過點P作x軸的垂線交直線AB與點C,作PD⊥AB于點D

(1)①求拋物線的解析式;②求sin∠ACP的值
(2)設點P的橫坐標為m
①用含m的代數(shù)式表示線段PD的長,并求出線段PD長的最大值;
②連接PB,線段PC把△PDB分成兩個三角形,求出當這兩個三角形面積之比為9:10時的m值;
③是否存在適合的m值,使△PCD與△PBD相似?若存在,直接寫出m值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同時擲兩個質(zhì)地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】韋玲和覃靜兩人玩“剪刀、石頭、布”的游戲,游戲規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀.
(1)請用列表法或樹狀圖表示出所有可能出現(xiàn)的游戲結果;
(2)求韋玲勝出的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級為建立學習興趣小組,對語文、數(shù)學、英語、物理、化學、思想品德、歷史、綜合共八個科目的喜歡情況進行問卷調(diào)查(每人只選一項),下表是隨機抽取部分學生的問卷進行統(tǒng)計的結果:

科目

語文

數(shù)學

英語

物理

化學

思想品德

歷史

綜合

人數(shù)

6

10

11

12

10

9

8

14


根據(jù)表中信息,解答下列問題:
(1)本次隨機抽查的學生共有人;
(2)本次隨機抽查的學生中,喜歡科目的人數(shù)最多;
(3)根據(jù)上表中的數(shù)據(jù)補全條形統(tǒng)計圖;
(4)如果該校九年級有600名學生,那么估計該校九年級喜歡綜合科目的學生有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:|﹣1|+ +(3.14﹣π)0﹣4cos60°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知邊長為4的正方形ABCD,P是BC邊上一動點(與B、C不重合),連結AP,作PE⊥AP交∠BCD的外角平分線于E.設BP=x,△PCE面積為y,則y與x的函數(shù)關系式是( 。

A.y=2x+1
B.y= x﹣2x2
C.y=2x﹣ x2
D.y=2x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應區(qū)“美麗廣西 清潔鄉(xiāng)村”的號召,某校開展“美麗廣西 清潔校園”的活動,該校經(jīng)過精心設計,計算出需要綠化的面積為498m2 , 綠化150m2后,為了更快的完成該項綠化工作,將每天的工作量提高為原來的1.2倍.結果一共用20天完成了該項綠化工作.
(1)該項綠化工作原計劃每天完成多少m2?,
(2)在綠化工作中有一塊面積為170m2的矩形場地,矩形的長比寬的2倍少3m,請問這塊矩形場地的長和寬各是多少米?

查看答案和解析>>

同步練習冊答案