【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=2∠AOC,將一直角三角板的直角頂點放在點O處,邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O按逆時針方向旋轉(zhuǎn)45°至圖2的位置,此時∠MOC= °;
(2)將圖1中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;
(3)在上述直角三角板從圖1逆時針旋轉(zhuǎn)一周的過程中,若三角板繞點O按5°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時,求此時三角板繞點O的運(yùn)動時間t的值.
【答案】(1)75°;(2)∠AOM﹣∠NOC=30°,理由詳見解析;(3)三角板繞點O的運(yùn)動時間為12秒或48秒.
【解析】
(1)由已知點O為直線AB上一點,過點O作射線OC,使∠BOC=2∠AOC,可求出∠BOC的度數(shù),由旋轉(zhuǎn)的度數(shù)可以求出∠MOC的度數(shù);
(2)因為∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,然后作差即可;
(3)求得∠AOC=60°,則∠AOD=30°或∠AON=30°,即逆時針旋轉(zhuǎn)60°或240°時直線ON平分∠AOC,據(jù)此求解.
解:(1)∵∠BOC+∠AOC=180°,∠BOC=2∠AOC,
∴∠AOC=60°,∠BOC=120°,
由旋轉(zhuǎn)可知∠BOM=45°,
∴∠MOC=120°﹣45°=75°.
故答案為:75.
(2)由(1)得∠AOC=60°,
∵∠MON=90°,
∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°,
∴∠AOM與∠NOC之間的數(shù)量關(guān)系為:∠AOM﹣∠NOC=30°.
(3)由(1)得∠AOC=60°,
①如下圖,
延長NO,
當(dāng)直線ON恰好平分銳角∠AOC,
∴∠AOD=∠COD=30°,
即逆時針旋轉(zhuǎn)60°時NO延長線平分∠AOC,
由題意得,5t=60,
∴t=12;
②如下圖,
當(dāng)NO平分∠AOC,
∴∠AON=30°,
即逆時針旋轉(zhuǎn)240°時NO平分∠AOC,
∴5t=240,
∴t=48,
∴三角板繞點O的運(yùn)動時間為12秒或48秒.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為爭創(chuàng)全國文明衛(wèi)生城,2008年市政府對市區(qū)綠化工程投入的資金是2000萬元,2010年投入的資金是2420萬元,且從2008年到2010年,兩年間每年投入資金的年平均增長率相同.
(1)求該市對市區(qū)綠化工程投入資金的年平均增長率;
(2)若投入資金的年平均增長率不變,那么該市在2012年需投入多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,則∠DAB的度數(shù)是______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場服裝部為了調(diào)動營業(yè)員的積極性,決定實行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對營業(yè)員進(jìn)行適當(dāng)?shù)莫剟睿疄榱舜_定一個適當(dāng)?shù)脑落N售目標(biāo),商場服裝部統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),數(shù)據(jù)如下:
17 | 18 | 16 | 13 | 24 | 15 | 28 | 26 | 18 | 19 |
22 | 17 | 16 | 19 | 32 | 30 | 16 | 14 | 15 | 26 |
15 | 32 | 23 | 17 | 15 | 15 | 28 | 28 | 16 | 19 |
對這30個數(shù)據(jù)按組距3進(jìn)行分組,并整理、描述和分析如下.
頻數(shù)分布表
組別 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
銷售額 | |||||||
頻數(shù) | 7 | 9 | 3 | 2 | 2 |
數(shù)據(jù)分析表
平均數(shù) | 眾數(shù) | 中位數(shù) |
20.3 | 18 |
請根據(jù)以上信息解答下列問題:
(1)填空:a= ,b= ,c= ;
(2)若將月銷售額不低于25萬元確定為銷售目標(biāo),則有 位營業(yè)員獲得獎勵;
(3)若想讓一半左右的營業(yè)員都能達(dá)到銷售目標(biāo),你認(rèn)為月銷售額定為多少合適?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面上有四個點A,B,C,D.
(1)根據(jù)下列語句畫圖:
①畫射線BA;連接BD;
②畫直線AD、BC相交于點E;
③在線段DC的延長線上取一點F,使CF=BC,連接EF;
(2)點B與直線AD的關(guān)系是 ;
(3)圖中以E為頂點的角中,小于平角的角共有 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個長方形操場的四角都設(shè)計一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場的長為a米,寬為b米.
(1)請列式表示操場空地的面積;
(2)若休閑廣場的長為 50米,寬為20米,圓形花壇的半徑為 3米,求操場空地的面積.(π取 3.14,計算結(jié)果保留 0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點分別為E、F、G、H,順次連接這四個點,得四邊形EFGH.
(1)如圖1,當(dāng)四邊形ABCD為正方形時,我們發(fā)現(xiàn)四邊形EFGH是正方形;如圖2,當(dāng)四邊形ABCD為矩形時,請判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時,設(shè)∠ADC=α(0°<α<90°),
①試用含α的代數(shù)式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點.
(1)求證:△ABM≌△DCM;
(2)填空:當(dāng)AB:AD= 時,四邊形MENF是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com