如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.將三角板中30°角的頂點D放在AB邊上移動,精英家教網(wǎng)使這個30°角的兩邊分別與△ABC的邊AC,BC相交于點E,F(xiàn),且使DE始終與AB垂直.
(1)△BDF是什么三角形?請說明理由;
(2)設(shè)AD=x,CF=y,試求y與x之間的函數(shù)關(guān)系式;(不用寫出自變量x的取值范圍)
(3)當(dāng)移動點D使EF∥AB時,求AD的長.
分析:(1)由已知可得∠FDB=60°,∠B=60°,從而可得到△BDF是等邊三角形.
(2)由∠A=30°,∠ACB=90°可得AB=2BC=2,再將CF=y,BF=1-y,代入即可得出x,y的關(guān)系;
(3)當(dāng)EF∥AB時,∠CEF=30°,∠FED=∠EDA=90°,CF=
1
2
EF,EF=
1
2
DF,代入計算即可求得AD的長.
解答:解:(1)△BDF是等邊三角形,證明如下:
∵ED⊥AB,∠EDF=30°,∴∠FDB=60°,
∵∠A=30°,∠ACB=90°,∴∠B=60°,
∴∠DFB=60°,∴△BDF是等邊三角形.

(2)∵∠A=30°,∠ACB=90°,∴AB=2BC=2,
∵CF=y,∴BF=1-y,又△BDF是等邊三角形,∴BD=BF=1-y,
∴x=2-(1-y)=1+y,∴y=x-1,

(3)當(dāng)EF∥AB時,∠CEF=30°,∠FED=∠EDA=90°,
∴CF=
1
2
EF,EF=
1
2
DF,
∵DF=BF=1-y,∴y=
1
4
(1-y),∴y=
1
5

∴x=y+1=
6
5
,即AD=
6
5
點評:本題考查的知識點比較多,難度較大,要熟練地掌握等邊三角形的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運(yùn)動,到點B停止.點P在AD上以
5
cm/s的速度運(yùn)動,在折線DE-EB上以1cm/s的速度運(yùn)動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運(yùn)動時間為t(s).
(1)當(dāng)點P在線段DE上運(yùn)動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案