【題目】把幾個圖形拼成一個新的圖形,再通過兩種不同的方法計算同一個圖形的面積,可以得到一個等式,也可以求出一些不規(guī)則圖形的面積.

例如,由圖1,可得等式:(a+2b)(a+b=a2+3ab+2b2

(1)如圖2,將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的形式表示這個大正方形的面積,你能發(fā)現(xiàn)什么結(jié)論?請用等式表示出來.

(2)利用(1)中所得到的結(jié)論,解決下面的問題: 已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.

(3)如圖3,將兩個邊長分別為ab的正方形拼在一起,B,CG三點在同一直線上,連接BDBF.若這兩個正方形的邊長滿足a+b=10,ab=20,請求出陰影部分的面積.

【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)45;(3)20.

【解析】試題分析:(1)此題根據(jù)面積的不同求解方法,可得到不同的表示方法.一種可以是3個正方形的面積和6個矩形的面積,種是大正方形的面積,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
(2)利用(1)中的等式直接代入求得答案即可;
(3)利用S陰影=正方形ABCD的面積+正方形ECGF的面積-三角形BGF的面積-三角形ABD的面積求解.

試題解析:

1)(a+b+c2=a2+b2+c2+2ab+2bc+2ac;

2a+b+c=11,ab+bc+ac=38

a2+b2+c2 =a+b+c2﹣2ab+ac+bc=121﹣76=45;

3a+b=10,ab=20

S陰影=a2+b2a+bba2

=a2+b2ab

=a+b2ab

=×102×20

=50﹣30

=20

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某足球運動員站在點O處練習(xí)射門,將足球從離地面0.5mA處正對球門踢出(Ay軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.

(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?

(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標(biāo)原點,與x軸交于點A﹣4,0).

1)求二次函數(shù)的解析式;

2)在拋物線上存在點P,滿足SAOP=8,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OBCD是邊長為4的正方形,平行于對角線BD的直線lO出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,運動到直線l與正方形沒有交點為止.設(shè)直線l掃過正方形OBCD的面積為S,直線l運動的時間為t(),下列能反映St之間函數(shù)關(guān)系的圖象是( )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽取20袋,檢測每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過或不足的部分分別用正、負(fù)數(shù)來表示,記錄如下表:

(1)這批樣品的質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?多或少幾克?

(2)若每袋標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測的總質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角坐標(biāo)系中,等腰直角的頂點是坐標(biāo)原點,點的坐標(biāo)是,直角頂點在第二象限,把繞點旋轉(zhuǎn),點對應(yīng),點對應(yīng),那么點的坐標(biāo)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在等邊中,邊上一點,邊上一點,且,以為邊作等邊,聯(lián)結(jié)、

求證:(1

2)四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在紙面上有一條數(shù)軸.

操作一:

(1)折疊紙面,使表示1的點與表示的點重合,則表示的點與表示______的點重合.

操作二:

(2)折疊紙面,使表示的點與表示3的點重合,回答下列問題:

①表示5的點與表示______的點重合;

②若數(shù)軸上A,B兩點之間的距離為9(AB的左側(cè)),且折疊后AB兩點重合,求A,B兩點表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y= -x2-2x的圖象與x軸交于點A、O,在拋物線上有一點P,滿足

SAOP=3,則點P的坐標(biāo)是(  )

A. -3,-3 B. 1-3 C. (-3,-3)或(-3,1) D. (-3,-3)或(1,-3)

查看答案和解析>>

同步練習(xí)冊答案