【題目】如圖,點是菱形對角線的交點,,,連接交于點.
(1)求證:;
(2)若菱形的邊長為2,且,求四邊形的面積.
【答案】(1)證明見解析;(2)
【解析】
(1)通過證明四邊形OCEB是矩形來推知OE=CB,根據(jù)是菱形,對角線垂直平分,已知,,可得四邊形OCEB是平行四邊形,由此即可推得四邊形OCEB是矩形.
(2)已知四邊形ABCD是菱形,,根據(jù)菱形的性質(zhì)即可求得OC和OD的長,即可求出四邊形的面積.
(1)∵四邊形ABCD是菱形,
∴AC⊥BD
∵CE∥BD,EB∥AC,
∴四邊形OCEB是平行四邊形,
∴四邊形OCEB是矩形,
∴OE=CB;
(2)∵四邊形ABCD是菱形
∴OA=OC,OD=OB,∠CDO=∠ODA=∠CDA=30°
∴在Rt△COD中,OC=CD=1
∴
∵四邊形OCEB是矩形
∴S四邊形OCEB=OC×OB=1×=
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,點G在邊BC的延長線上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于點O.
(1)求證:OE=OF;
(2)若點O為CD的中點,求證:四邊形DECF是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的邊長AB=3cm,AC=3 cm,動點M從點A出發(fā),沿AB以1cm/s的速度向點B勻速運動,同時動點N從點D出發(fā),沿DA以2cm/s的速度向點A勻速運動.若△AMN與△ACD相似,則運動的時間t為_____s.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y關(guān)于x的函數(shù)表達式是,下列結(jié)論不正確的是( )
A.若,函數(shù)的最大值是5
B.若,當時,y隨x的增大而增大
C.無論a為何值時,函數(shù)圖象一定經(jīng)過點
D.無論a為何值時,函數(shù)圖象與x軸都有兩個交點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸交于點、,頂點為M.
(1)求拋物線的解析式和點M的坐標;
(2)點E是拋物線段BC上的一個動點,設的面積為S,求出S的最大值,并求出此時點E的坐標;
(3)在拋物線的對稱軸上是否存在點P,使得以A、P、C為頂點的三角形是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線與軸交于,兩點,頂點為.
(1)當,時,求線段的長度;
(2)當,若點到軸的距離與點到軸的距離相等,求該拋物線的解析式;
(3)若,當時,的最大值為2,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點、點在半徑為的上,為上一動點,為軸上一定點,且當點從點逆時針運動到點時,點的運動路徑長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉(zhuǎn)60°,得到△CBD,若點B的坐標為(4,0),則點C的坐標為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com