【題目】已知,拋物線軸交于,兩點(diǎn),頂點(diǎn)為

1)當(dāng),時(shí),求線段的長(zhǎng)度;

2)當(dāng),若點(diǎn)軸的距離與點(diǎn)軸的距離相等,求該拋物線的解析式;

3)若,當(dāng)時(shí),的最大值為2,求的值.

【答案】12;(2(P在第一象限),(P在第四象限);(3m的值為10+2

【解析】

1)把a=1,m=2代入函數(shù)解析式,得到yx24x+3,求出A、B兩點(diǎn)坐標(biāo),問(wèn)題得解;

2)把代入函數(shù)解析式,得到y2x24mx+2m2+2m5=,確定點(diǎn)P的坐標(biāo)(m,2m-5),即點(diǎn)P在直線 y=2x-5上,根據(jù)點(diǎn)Px軸的距離與點(diǎn)Py軸的距離相等,分點(diǎn)P在第一象限和第四象限討論即可;

(3)當(dāng)a,拋物線的解析式為yxm2+2m5.分三類(lèi)討論①當(dāng)m2m2,即m2時(shí),2m2m2+2m52;②當(dāng)2m5≤m≤2m2,即2≤m≤5時(shí),2m52;③當(dāng)m2m5,即m5時(shí),2m5m2+2m52,分別解方程,舍去不合題意者,問(wèn)題得解.

解:(1)當(dāng)a=1,m=2時(shí);yx24x+3

當(dāng)y=0時(shí),x24x+3=0;

AB=3-1=2

2y2x24mx+2m2+2m5=

∵頂點(diǎn)為P,∴Pm,2m-5

∴點(diǎn)P在直線 y=2x-5

∵點(diǎn)Px軸的距離與點(diǎn)Py軸的距離相等

∴當(dāng)點(diǎn)P在第一象限時(shí),m=2m-5m=5,該拋物線的解析式為

當(dāng)點(diǎn)P在第四象限時(shí),m=-2m-5),m=,該拋物線的解析式為

3a,拋物線的解析式為yxm2+2m5

分三種情況考慮:

①當(dāng)m2m2,即m2時(shí),有2m2m2+2m52

整理,得:m214m+390

解得:m17(舍去),m27+(舍去);

②當(dāng)2m5≤m≤2m2,即2≤m≤5時(shí),有2m52,

解得:m;

③當(dāng)m2m5,即m5時(shí),有2m5m2+2m52,

整理,得:m220m+600

解得:m3102(舍去),m410+2

綜上所述:m的值為10+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié)前夕,一場(chǎng)突如其來(lái)的新冠肺炎疫情牽動(dòng)著全國(guó)人民的心,因疫情發(fā)展迅速,全國(guó)口罩等防護(hù)用品成了年貨,供應(yīng)緊張.某藥店用2000元購(gòu)進(jìn)某品牌的一批口罩后,供不應(yīng)求,又用5000元購(gòu)進(jìn)這種口罩,第二批口罩的數(shù)量是第一批的2倍,但進(jìn)貨單價(jià)比第一批貴2元.

1)第一批口罩進(jìn)貨單價(jià)多少元?

2)若兩次購(gòu)進(jìn)口罩按同一價(jià)格銷(xiāo)售,兩批全部售完后,獲利不少于2000元,那么銷(xiāo)售單價(jià)至少為多少元?

3)由于黨的好政策,愛(ài)心工人加班加點(diǎn)地生產(chǎn),口罩變得不再緊俏,藥店第三批進(jìn)貨單價(jià)比第一批便宜1元,若按照(2)中銷(xiāo)售單價(jià)出售,每天可以售出60個(gè),藥店為了促銷(xiāo),決定降低一定的價(jià)格,每降低一元,每天多售出20個(gè),問(wèn)單價(jià)定為多少時(shí),每天利潤(rùn)最大?最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】茶葉是安徽省主要經(jīng)濟(jì)作物之一,2020年新茶上市期間,某茶廠為獲得最大利益,根據(jù)市場(chǎng)行情,把新茶價(jià)格定為400/kg,并根據(jù)歷年的相關(guān)數(shù)據(jù)整理出第x天(1x15,且x為整數(shù))制茶成本(含采摘和加工)和制茶量的相關(guān)信息如下表.假定該茶廠每天制作和銷(xiāo)售的新茶沒(méi)有損失,且能在當(dāng)天全部售出(當(dāng)天收入=日銷(xiāo)售額-日制茶成本)

制茶成本(元/kg

150+10x

制茶量(kg

40+4x

1)求出該茶廠第10天的收入;

2)設(shè)該茶廠第x天的收入為y(元).試求出yx之間的函數(shù)關(guān)系式,并求出y的最大值及此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是菱形對(duì)角線的交點(diǎn),,,連接于點(diǎn)

1)求證:;

2)若菱形的邊長(zhǎng)為2,且,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解朝陽(yáng)社區(qū)歲居民最喜歡的支付方式,某興趣小組對(duì)社區(qū)內(nèi)該年齡段的部分居民展開(kāi)了隨機(jī)問(wèn)卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

(1)求參與問(wèn)卷調(diào)查的總?cè)藬?shù).

(2)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)是A(1,3),將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)后得到OB,點(diǎn)B恰好在拋物線上,OB與拋物線的對(duì)稱(chēng)軸交于點(diǎn)C

1)求拋物線的解析式;

2P是線段AC上一動(dòng)點(diǎn),且不與點(diǎn)AC重合,過(guò)點(diǎn)P作平行于x軸的直線,與的邊分別交于M,N兩點(diǎn),將以直線MN為對(duì)稱(chēng)軸翻折,得到

設(shè)點(diǎn)P的縱坐標(biāo)為m

①當(dāng)內(nèi)部時(shí),求m的取值范圍;

②是否存在點(diǎn)P,使,若存在,求出滿足m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校車(chē)安全是近幾年社會(huì)關(guān)注的重大問(wèn)題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車(chē)速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車(chē)道上確定點(diǎn)D,使CD與垂直,測(cè)得CD的長(zhǎng)等于21米,在上點(diǎn)D的同側(cè)取點(diǎn)A、B,使CAD=300CBD=600

(1)求AB的長(zhǎng)(精確到0.1米,參考數(shù)據(jù):);

(2)已知本路段對(duì)校車(chē)限速為40千米/小時(shí),若測(cè)得某輛校車(chē)從A到B用時(shí)2秒,這輛校車(chē)是否超速?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形中,對(duì)角線,相交于O.點(diǎn).H為邊上的點(diǎn),過(guò)點(diǎn)H,交線段于點(diǎn)E,連接于點(diǎn)F,交于點(diǎn)G.若,則的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形中,、相交于點(diǎn),邊于點(diǎn),連接

1)如圖,求證:平分;

2)如圖,延長(zhǎng)于點(diǎn),連接,在不添加任何輔助線的條件下,請(qǐng)直接寫(xiě)出面積為面積2倍的三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案