【題目】觀察如圖所示的圖形,回答下列問題:

1)按甲方式將桌子拼在一起.

4張桌子拼在一起共有 個座位,n張桌子拼在一起共有 個座位;

2)按乙方式將桌子拼在一起.

6張桌子拼在一起共有 個座位,m張桌子拼在一起共有 個座位;

3)某食堂有A,B兩個餐廳,現(xiàn)有102張這樣的長方形桌子,計劃把這些桌子全放在兩個餐廳,每個餐廳都要放有桌子.a張桌子放在A餐廳,按甲方式每6張拼成1張大桌子;將其余桌子都放在B餐廳,按乙方式每4張桌子拼成1張大桌子,若兩個餐廳一共有404個座位,問AB兩個餐廳各有多少個座位?

【答案】(1)12,2n+4;(2)26,4m+2;(3)A餐廳有80個座位,B餐廳有324個座位.

【解析】

1)觀察圖形發(fā)現(xiàn),在一桌坐6個人基礎(chǔ)上,每增加一張桌子多兩個人,據(jù)此尋找規(guī)律求解即可;

2)觀察圖形發(fā)現(xiàn),在一桌坐6個人基礎(chǔ)上,每增加一張桌子多四個人,據(jù)此尋找規(guī)律求解即可;

3)根據(jù)(1)(2)中列出的關(guān)系式,分別求出每6張以及每4張時甲乙方式的座位數(shù),再根據(jù)兩個餐廳一共404個座位列出方程求解即可.

1)觀察可得,按該方式將4張桌子拼在一起共有12個座位,n張桌子拼在一起有個座位;

2)觀察可得,按該方式將6張桌子拼在一起共有26個座位,m張桌子拼在一起有個座位;

3)按甲方式每6張桌子拼在一起能有座位:個;

按乙方式每4張桌子拼在一起能有座位:=18個;

,

解得:

A餐廳有30張桌子,共有80個座位,

B餐廳共有72張桌子,共有324個座位.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個交點(diǎn)A、B的橫坐標(biāo)分別為﹣3、1,與y軸交于點(diǎn)C,下面四個結(jié)論:①16a+4b+c<0;②P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點(diǎn),則y1>y2;③c=﹣3a;④△ABC是等腰三角形,則b=﹣或﹣.其中正確的有_____.(請將正確結(jié)論的序號全部填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線 OC,使BOC=60°,將一個直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)

(1)如圖1,若直角三角板DOE的一邊OD放在射線OB,COE= °;

(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時針方向轉(zhuǎn)動到某個位置,OE恰好平分AOC,請說明OD所在射線是BOC的平分線;

(3)如圖3,將三角板DOE繞點(diǎn)O逆時針轉(zhuǎn)動到某個位置時,若恰好COD= AOEBOD的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=ax2+bx-2與x軸的兩個交點(diǎn)分別為A(1,0),B(4,0),與y軸的交點(diǎn)為C.

(1)求出拋物線的解析式及點(diǎn)C的坐標(biāo);

(2)點(diǎn)P是在直線x=4右側(cè)的拋物線上的一動點(diǎn),過P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OCB相似?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知A、O、B三點(diǎn)在同一直線上,射線OD、OE分別平分∠AOC、BOC

(1)求∠DOE的度數(shù);

(2)如圖2,在∠AOD內(nèi)引一條射線OF,使∠COF=,其他不變,設(shè)∠DOF=

①求∠AOF的度數(shù)(用含的代數(shù)式表示).

②若∠BOD是∠AOF2倍,求∠DOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級:當(dāng)空氣污染指數(shù)達(dá)0—50時為1級,質(zhì)量為優(yōu);51—100時為2級,質(zhì)量為良;101—200時為3級,輕度污染;201—300時為4級,中度污染;300以上時為5級,重度污染.某城市隨機(jī)抽取了2015年某些天的空氣質(zhì)量檢測結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:

(1) 本次調(diào)查共抽取了 天的空氣質(zhì)量檢測結(jié)果進(jìn)行統(tǒng)計;

(2) 補(bǔ)全條形統(tǒng)計圖;

(3) 扇形統(tǒng)計圖中3級空氣質(zhì)量所對應(yīng)的圓心角為 °;

(4) 如果空氣污染達(dá)到中度污染或者以上,將不適宜進(jìn)行戶外活動,根據(jù)目前的統(tǒng)計,請你估計2015年該城市有多少天不適宜開展戶外活動.(2015年共365)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面上,RtABC與直徑為CE的半圓O如圖1擺放,∠B=90°,AC=2CE=m,BC=n半圓OBC邊于點(diǎn)D,將半圓O繞點(diǎn)C按逆時針方向旋轉(zhuǎn)點(diǎn)D隨半圓O旋轉(zhuǎn)且ECD始終等于ACB,旋轉(zhuǎn)角記為α(0°≤α≤180°).

(1)當(dāng)α=0°,連接DE,CDE=   °,CD=   ;

(2)試判斷旋轉(zhuǎn)過程中的大小有無變化?請僅就圖2的情形給出證明

(3)m=10,n=8,當(dāng)旋轉(zhuǎn)的角度α恰為ACB的大小時,求線段BD的長

(4)m=6,n=當(dāng)半圓O旋轉(zhuǎn)至與ABC的邊相切時直接寫出線段BD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上兩點(diǎn)AB對應(yīng)的數(shù)分別為-30、0.若點(diǎn)A、B同時出發(fā),點(diǎn)A以每秒2個單位長度的速度向右運(yùn)動;點(diǎn)B以每秒3個單位長度的速度向左運(yùn)動,到達(dá)點(diǎn)A出發(fā)時的位置后立即以每秒4個單位長度的速度向右運(yùn)動.設(shè)運(yùn)動的時間為t秒.

1)求點(diǎn)A和點(diǎn)B第一次相遇時t的值;

2)當(dāng)點(diǎn)A和點(diǎn)B之間的距離為6個單位長度時,求t的值.

查看答案和解析>>

同步練習(xí)冊答案