【題目】據(jù)測算,我國每天土地沙漠化造成的經(jīng)濟損失平均為150 000 000元,這個數(shù)字用科學(xué)記數(shù)法表示為( 。

A.15×107B.1.5×108C.0.15×109D.1.5×107

【答案】B

【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).

解:將150000 000用科學(xué)記數(shù)法表示為1.5×108

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)嫦娥三號剛進入軌道時,速度為大約每秒7100米,將數(shù)7100用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若線段AB平行于x軸,AB的長為4,且A的坐標(biāo)為(2,3),求點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)|﹣3|+(﹣1)2013×(π﹣3)0﹣(﹣ 3
(2)a3a3+(2a32+(﹣a23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6張如圖1的長為a,寬為b(a>b)的小長方形紙片,按圖2方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足(
A.a=2b
B.a=3b
C.a=4b
D.a=b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E.

(1)求證:AC是O的切線;

(2)若OB=10,CD=8,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】節(jié)約是一種美德,節(jié)約是一種智慧.據(jù)不完全統(tǒng)計,全國每年浪費食物總量折合糧食可養(yǎng)活約3億5千萬人,350000000用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”“AAS”“SSS”) 和直角三角形全等的判定方法(即“HL”) , 我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進行研究.

初步思考

不妨將問題用符號語言表示為: △ABC△DEF, AC = DF, BC = EF, ∠B =∠E,

然后, 對∠B進行分類, 可分為“∠B是直角、鈍角、銳角”三種情況進行探究.

深入探究

第一種情況: 當(dāng)∠B是直角時, △ABC≌△DEF.

(1) 如圖①, △ABC△DEF, AC = DF, BC = EF, ∠B =∠E = 90°, 根據(jù)_____________, 可以知道Rt△ABC≌Rt△DEF.

第二種情況: 當(dāng)∠B是鈍角時, △ABC≌△DEF.

 

(2) 如圖②, △ABC△DEF, AC = DF, BC = EF, ∠B =∠E, 且∠B、∠E都是鈍角.

求證: △ABC≌△DEF.

第三種情況: 當(dāng)∠B是銳角時, △ABC△DEF不一定全等.

 

(3) △ABC△DEF, AC = DF, BC = EF, ∠B = ∠E, 且∠B∠E都是銳角, 請你用尺規(guī)在圖③中作出△DEF, 使△DEF△ABC不全等. (不寫作法, 保留作圖痕跡)

(4) ∠B還要滿足什么條件, 就可以使△ABC≌△DEF ? 請直接寫出結(jié)論: △ABC△DEF, AC = DF, BC = EF, ∠B =∠E, 且∠B、∠E都是銳角, __________, △ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與原點重合,頂點A,C分別在x軸、y軸上,反比例函數(shù)y=(k0,x>0)的圖象與正方形的兩邊AB、BC分別交于點M、N,連接OM、ON、MN.

(1)證明OCN≌△OAM;

(2)若NOM=45°,MN=2,求點C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案