【題目】如圖,點(diǎn)P( x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)圖象C1與C2上的任一點(diǎn). 當(dāng)a ≤ x ≤ b時(shí),有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個(gè)函數(shù)在a ≤ x ≤ b上是“相鄰函數(shù)”,否則稱它們?cè)?/span>a ≤ x ≤ b上是“非相鄰函數(shù)”.
例如,點(diǎn)P(x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點(diǎn),當(dāng)-3 ≤ x ≤ -1時(shí),y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過(guò)構(gòu)造函數(shù)y = x + 2,并研究它在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個(gè)函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.
(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,并說(shuō)明理由;
(2)若函數(shù)y = x2 - x與y = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;
【答案】(1)是,理由見解析;(2)
【解析】
(1)通過(guò)構(gòu)建函數(shù),根據(jù)一次函數(shù)的性質(zhì)可得出該函數(shù)在0≤x≤2上單調(diào)遞增,分別代入x=0、x=2即可得出y的取值范圍,由此即可得出結(jié)論;
(2)由函數(shù)y=x2-x與y = x - a在0≤x≤2上是“相鄰函數(shù)”,構(gòu)造函數(shù),根據(jù)拋物線在0 ≤ x ≤ 2函數(shù)的取值范圍,令其最大值≤1、最小值≥-1,解關(guān)于a的不等式組即可得出結(jié)論.
解:(1)是“相鄰函數(shù)”.
理由如下:,構(gòu)造函數(shù).
在上隨著的增大而增大,
當(dāng)時(shí),函數(shù)有最大值1,當(dāng)時(shí),函數(shù)有最小值,即.
.
即函數(shù)與在上是“相鄰函數(shù)”.
(2),構(gòu)造函數(shù).
,頂點(diǎn)坐標(biāo)為
又拋物線的開口向上,
當(dāng)時(shí),函數(shù)有最小值,
當(dāng)或時(shí),函數(shù)有最大值,即,
函數(shù)與在上是“相鄰函數(shù)”,
,即,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)如圖,輪船從B處以每小時(shí)60海里的速度沿南偏東20°方向勻速航行,在B處觀測(cè)燈塔A位于南偏東50°方向上,輪船航行40分鐘到達(dá)C處,在C處觀測(cè)燈塔A位于北偏東10°方向上,則C處與燈塔A的距離是( )
A.20海里 B.40海里 C.海里 D.海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,正方形ABCD繞點(diǎn)A(0,6)旋轉(zhuǎn),當(dāng)點(diǎn)B落在x軸上時(shí),點(diǎn)C剛好落在反比例函數(shù)(k≠0,x>0)的圖像上.已知sin∠OAB=.
(1)求反比例函數(shù)的表達(dá)式;
(2)反比例函數(shù)的圖像是否經(jīng)過(guò)AD邊的中點(diǎn),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.點(diǎn)P為線段BC上一點(diǎn),過(guò)點(diǎn)P作直線ι⊥x軸于點(diǎn)F,交拋物線于點(diǎn)E.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),求線段PE長(zhǎng)的最大值;
(3)當(dāng)PE取最大值時(shí),把拋物線向右平移得到拋物線,拋物線與線段BE交于點(diǎn)M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線應(yīng)向右平移幾個(gè)單位長(zhǎng)度可得到拋物線?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一束光線從點(diǎn)O射出,照在經(jīng)過(guò)A(1,0)、B(0,1)的鏡面上的點(diǎn)C,經(jīng)AB反射后,又照到豎立在y軸位置的鏡面上的D點(diǎn),最后經(jīng)y軸再反射的光線恰好經(jīng)過(guò)點(diǎn)A,則點(diǎn)C的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加快“智慧校園”建設(shè),某縣準(zhǔn)備為試點(diǎn)學(xué)校采購(gòu)一批 、 兩種型號(hào)的一體機(jī).經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),今年每套 型一體機(jī)的價(jià)格比每套 型一體機(jī)的價(jià)格多 萬(wàn)元,且用萬(wàn)元恰好能購(gòu)買 套 型一體機(jī)和 套 型一體機(jī).
(1)求今年每套 型、 型一體機(jī)的價(jià)格各是多少萬(wàn)元?
(2)該縣明年計(jì)劃采購(gòu) 型、 型一體機(jī)共 套,需投入資金 萬(wàn)元. 考慮物價(jià)因素,預(yù)計(jì)明年每套 型一體機(jī)的價(jià)格不變,每套 型一體機(jī)的價(jià)格比今年上漲 , 設(shè)該市明年購(gòu)買 型一體機(jī) 套.
①請(qǐng)寫出該縣明年需投入資金 (萬(wàn)元)與購(gòu)買 型一體機(jī) (套)之間的函數(shù)關(guān)系式 ;
②若該縣明年購(gòu)買 型一體機(jī)的總費(fèi)用不低于購(gòu)買 型一體機(jī)的總費(fèi)用,那么該縣明年至少需要投入多少萬(wàn)元才能完成采購(gòu)計(jì)劃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過(guò)點(diǎn),且為雙曲線上的一點(diǎn),為坐標(biāo)平面上一動(dòng)點(diǎn),垂直于軸,垂直于軸,垂足分別是、.
(1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式.
(2)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線上是否存在這樣的點(diǎn),使得與的面積相等?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,對(duì)于任意的三個(gè)點(diǎn)A、B、C,給出如下定義:若矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的“三點(diǎn)矩形”.在點(diǎn)A,B,C的所有“三點(diǎn)矩形”中,若存在面積最小的矩形,則稱該矩形為點(diǎn)A,B,C的“最佳三點(diǎn)矩形”.
如圖1,矩形DEFG,矩形IJCH都是點(diǎn)A,B,C的“三點(diǎn)矩形”,矩形IJCH是點(diǎn)A,B,C的“最佳三點(diǎn)矩形”.
如圖2,已知M(4,1),N(﹣2,3),點(diǎn)P(m,n).
(1)①若m=1,n=4,則點(diǎn)M,N,P的“最佳三點(diǎn)矩形”的周長(zhǎng)為 ,面積為 ;
②若m=1,點(diǎn)M,N,P的“最佳三點(diǎn)矩形”的面積為24,求n的值;
(2)若點(diǎn)P在直線y=﹣2x+4上.
①求點(diǎn)M,N,P的“最佳三點(diǎn)矩形”面積的最小值及此時(shí)m的取值范圍;
②當(dāng)點(diǎn)M,N,P的“最佳三點(diǎn)矩形”為正方形時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P(m,n)在拋物線y=ax2+bx+c上,且當(dāng)點(diǎn)M,N,P的“最佳三點(diǎn)矩形”面積為12時(shí),﹣2≤m≤﹣1或1≤m≤3,直接寫出拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點(diǎn)C在直線b上,直線a交AB于點(diǎn)D,交AC于點(diǎn)E,若∠1=145°,則∠2的度數(shù)是( )
A.30°B.35°C.40°D.45°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com