【題目】如圖,已知和均是等邊三角形,點在同一條直線上,與交于點,與交于點,與交于點,連接,則下列結論:①;②;③﹔④,其中正確結論有_________個.
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子里裝有3個黑球和若干白球,它們除顏色外都相同.在不允許將球倒出來數(shù)的前提下,小明為估計其中白球數(shù),采用如下辦法:隨機從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機摸出一球,記下顏色,…不斷重復上述過程.小明共摸100次,其中20次摸到黑球.根據(jù)上述數(shù)據(jù),小明估計口袋中白球大約有( )
A. 10個 B. 12 個 C. 15 個 D. 18個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊中,,點在上,,點從點出發(fā),以每秒1個單位長度的速度沿方向向點運動,關于的軸對稱圖形為.
(1)當為何值時,點在線段上;
(2)當時,求與的數(shù)量關系;
(3)當點、、三點共線時,求證:點為線段的中點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,拋物線y=a(x-)2+與⊙M交于A,B,C,D四點,點A,B在x軸上,點C坐標為(0,-2).
(1)求a值及A,B兩點坐標;
(2)點P(m,n)是拋物線上的動點,當∠CPD為銳角時,請求出m的取值范圍;
(3)點E是拋物線的頂點,⊙M沿CD所在直線平移,點C,D的對應點分別為點C′,D′,順次連接A,C′,D′,E四點,四邊形AC′D′E(只要考慮凸四邊形)的周長是否存在最小值?若存在,請求出此時圓心M′的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=x+m (m為常數(shù))的圖像與x軸交于點A(-3,0),與y軸交于點C.以直線x=1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過A、C兩點,并與x軸的正半軸交于點B.
(1)求m的值及拋物線的函數(shù)表達式;
(2)若P是拋物線對稱軸上一動點,△ACP周長最小時,求出P的坐標;
(3)是否存在拋物在線一動點Q,使得△ACQ是以AC為直角邊的直角三角形?若存在,求出點Q的橫坐標;若不存在,請說明理由;
(4)在(2)的條件下過點P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點,試問是否為定值,如果是,請直接寫出結果,如果不是請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標系中的長方形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,
(1)求D、E兩點的坐標.
(2)求過D、E兩點的直線函數(shù)表達式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春季是傳染病多發(fā)的季節(jié),積極預防傳染病是學校高度重視的一項工作,為此,某校對學生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風,室內每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關系,在打開門窗通風前分別滿足兩個一次函數(shù),在通風后又成反比例,如圖所示.下面四個選項中錯誤的是( )
A. 經(jīng)過集中噴灑藥物,室內空氣中的含藥量最高達到
B. 室內空氣中的含藥量不低于的持續(xù)時間達到了
C. 當室內空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效
D. 當室內空氣中的含藥量低于時,對人體才是安全的,所以從室內空氣中的含藥量達到開始,需經(jīng)過后,學生才能進入室內
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com