【題目】如圖,在中,AD平分,按如下步驟作圖:

第一步,分別以點(diǎn)A、D為圓心,以大于的長(zhǎng)為半徑在AD兩側(cè)作弧,交于兩點(diǎn)M、N;

第二步,連接MN分別交AB、AC于點(diǎn)E、F;

第三步,連接DE、DF.

,,求BD的長(zhǎng)是______

【答案】

【解析】

利用基本作圖得MN垂直平分AD,則AE=DE,F(xiàn)A=FC,再證明四邊形AEDF為菱形得到AE=AF=4,DE∥AC,然后利用平行線分線段成比例定理計(jì)算BD的長(zhǎng).

解:由作法得MN垂直平分AD,則AE=DE,F(xiàn)A=FC,

∵AD平分∠EAF,AD⊥EF,

∴△AEF為等腰三角形,

∴AE=AF,

∴AE=AF=DE=DF,

∴四邊形AEDF為菱形,

∴AE=AF=4,DE∥AC,

=,即=,

∴BD=

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)D在⊙O上,連接CDDC=BC,過(guò)C點(diǎn)作AD的垂線交AD延長(zhǎng)線于E.

(1)求證:CE是⊙O的切線;

(2)若AB=5,AC=4,求tan∠DCE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C、EB、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數(shù)是( )

A. 80° B. 90° C. 100° D. 108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,DEBC,點(diǎn)F在邊AC上,DFBE相交于點(diǎn)G,且∠EDF=ABE.

求證:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的頂點(diǎn)在坐標(biāo)原點(diǎn),正方形的邊在同一直線上, 在同一直線上,且,邊和邊所在直線的解析式分別為: ,則點(diǎn)的坐標(biāo)是(

A.(6,-1)B.(7-1)C.(7,-2)D.(6-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明放學(xué)騎車回家過(guò)程中,離校的路程s與時(shí)間t的關(guān)系如圖,其中小明先以平時(shí)回家的速度騎車,中間因事停留片刻,因此加快速度,請(qǐng)根據(jù)圖象回答下列問(wèn)題:

開(kāi)始10分鐘內(nèi)的速度是多少?

若小明在停留后速度每分鐘加快100米,求a的值和小明平時(shí)回家所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電腦經(jīng)銷商計(jì)劃購(gòu)進(jìn)一批電腦機(jī)箱和液晶顯示器,若購(gòu)電腦機(jī)箱10臺(tái)和液液晶顯示器8臺(tái),共需要資金7000元;若購(gòu)進(jìn)電腦機(jī)箱2臺(tái)和液示器5臺(tái),共需要資金4120元.

1)每臺(tái)電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?

2)該經(jīng)銷商購(gòu)進(jìn)這兩種商品共50臺(tái),而可用于購(gòu)買這兩種商品的資金不超過(guò)22240元.根據(jù)市場(chǎng)行情,銷售電腦機(jī)箱、液晶顯示器一臺(tái)分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤(rùn)不少于4100元.試問(wèn):該經(jīng)銷商有哪幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于x的一元二次方程mx2﹣(2m﹣2)x+m=0有實(shí)根.

(1)m的取值范圍;

(2)若原方程兩個(gè)實(shí)數(shù)根為x1,x2,是否存在實(shí)數(shù)m,使得=1?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究:

1)計(jì)算判斷:(計(jì)算并判斷大小,填寫符號(hào):“>”“<”“=”

①當(dāng),時(shí),_____;

②當(dāng)時(shí),_____

③當(dāng),時(shí),______;

④當(dāng)時(shí),______;

⑤當(dāng),時(shí),______;

⑥當(dāng),時(shí),_______;

2)歸納猜想:猜想并寫出關(guān)于,是常數(shù),且,)之間的數(shù)量關(guān)系;

3)探究證明:請(qǐng)補(bǔ)全以下證明過(guò)程:

證明:根據(jù)一個(gè)實(shí)數(shù)的平方是非負(fù)數(shù),可得,

,,

4)實(shí)踐應(yīng)用:要制作面積為的長(zhǎng)方形(或正方形)框架,直接利用探究得出的結(jié)論,求出框架周長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案