【題目】如圖,在△ABC中,BC=AC=5,AB=8,CD為AB邊的高,點A在x軸上,點B在y軸上,點C在第一象限,若A從原點出發(fā),沿x軸向右以每秒4個單位長的速度運動,則點B隨之沿y軸下滑,并帶動△ABC在平面內(nèi)滑動,設(shè)運動時間為t秒,當(dāng)B到達(dá)原點時停止運動.當(dāng)△ABC的邊與坐標(biāo)軸平行時,t=_____________.
【答案】
【解析】分析:分兩種情況:①當(dāng)CA⊥x軸時,根據(jù)兩角對應(yīng)相等的兩三角形相似證明△CAD∽△ABO,得出,求出AO的值;②CB⊥y軸時,同理,可求出AO的值.
詳解:∵BC=AC,CD⊥AB,
∴D為AB的中點,
∴AD=AB=4.
在Rt△CAD中,CD==3,
分兩種情況:
①設(shè)AO=4t1時,CA⊥x軸時,A垂足,如圖.
∴CA⊥OA,
∴CA∥y軸,
∴∠CAD=∠ABO.
又∵∠CDA=∠AOB=90°,
∴Rt△CAD∽Rt△ABO,
∴,即,
解得t1=;
②設(shè)AO=4t2時,CB⊥y軸,B為切點,如圖.
同理可得,t2=.
綜上可知,當(dāng)以點C為圓心,CA為半徑的圓與坐標(biāo)軸相切時,t的值為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= (x<0)的圖象經(jīng)過點A(﹣1,1),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B′在此反比例函數(shù)的圖象上,則t的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別是邊BC、AD上的點,有下列條件:
①AE∥CF;②BE=FD;③∠1=∠2;④AE=CF.
若要添加其中一個條件,使四邊形AECF一定是平行四邊形,則添加的條件可以是( )
A. ①②③④ B. ①②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶八中七年級 16 班同學(xué)為了解2019年某小區(qū)家庭月均用水情況,進行了一次社會實踐活動.他們隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理,
請解答以下問題:
(1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
(2)若重慶市準(zhǔn)備實施的階梯水價中,計劃對月用水量不超過 15 噸的家庭實施水價下浮政策.為此,該班同學(xué)隨機從這些用戶中抽取一戶進行采訪.則抽到的采訪用戶屬于月用水量不超過 5 噸的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由太原開往運城的D5303次列車,途中有6個停車站,這次列車的不同票價最多有( )
A. 28種 B. 15種 C. 56種 D. 30種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
①若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點C1的坐標(biāo)為(4,0),寫出頂點A1 , B1的坐標(biāo);
②若△ABC和△A2B2C2關(guān)于原點O成中心對稱圖形,寫出△A2B2C2的各頂點的坐標(biāo);
③將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A3B3C3 , 寫出△A3B3C3的各頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個黑球的概率是,求從袋中取出黑球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖是用4個全等的長方形拼成的一個“回形”正方形,圖中陰影部分面積用2種方法表示可得一個等式,這個等式為_______.
(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com