【題目】已知△ABC為等邊三角形,P是直線AC上一點(diǎn),AD⊥BP于D,以AD為邊作等邊△ADE(D,E在直線AC異側(cè)).
(1)如圖1,若點(diǎn)P在邊AC上,連CD,且∠BDC=150°,則= ;(直接寫(xiě)結(jié)果)
(2)如圖2,若點(diǎn)P在AC延長(zhǎng)線上,DE交BC于F求證:BF=CF;
(3)在圖2中,若∠PBC=15°,AB=,請(qǐng)直接寫(xiě)出CP的長(zhǎng) .
【答案】(1)(2)證明見(jiàn)解析(3)
【解析】
(1)由題意可證△ABD≌△ACE,可得BD=CE,∠ABD=∠ACE,即可求∠EDC=60°,∠EDC=90°,則可得的值;
(2)過(guò)點(diǎn)CM∥BD交DE于點(diǎn)M,連接CE,由題意可證△ABD≌△ACE,可得BD=CE,∠AEC=∠ADB=90°,可求∠DEC=∠EMC=30°,可得MC=EC=BD,
則可證△BDF≌△CMF,可得BF=CF;
(3)作∠ABG=∠BAD,交AD于點(diǎn)G,由題意可求∠ABG=∠BAG=15°,可得∠BGD=30°,BG=AG,則可得BG=2BD,GD=BD,AD=BD+2BD,根據(jù)勾股定理可求BD=1,AD=2+,即可求AP的長(zhǎng),則可求CP的長(zhǎng).
(1)如圖:連接CE
∵△ABC,△ADE是等邊三角形,
∴AB=AC,AD=AE,∠DAE=∠BAC=60°,
∴∠BAD=∠CAE,且AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴BD=CE,∠ABD=∠ACE,
∵∠ADB=90°,∠BDC=150°,∠ADE=60°,
∴∠EDC=60°,
∵∠BDC=∠BPC+∠ACD=∠BAC+∠ABD+∠ACD=60°+∠ACE+∠ACD=60°+∠ECD=150°
∴∠ECD=90°,
∴tan∠EDC=,
∴;
(2)如圖:過(guò)點(diǎn)CM∥BD交DE于點(diǎn)M,連接CE
∵△ABC和△ADE是等邊三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ADE=∠AED,
∴∠BAD=∠CAE,且AB=AC,AD=AE,
∴△ABD≌△ACE(ASA),
∴BD=CE,∠AEC=∠ADB=90°,
∵∠BDE=∠ADB+∠ADE,∠DEC=∠AEC-∠AED,
∴∠BDE=150°,∠DEC=30°,
∵MC∥BD,
∴∠DMC=∠BDE=150°,
∴∠EMC=30°,
∴∠DEC=∠EMC,
∴MC=CE,
∴BD=CM,且∠BDE=∠CMD,∠BFD=∠CFM,
∴△BDF≌△CMF(AAS),
∴CF=BF,
(3)如圖:作∠ABG=∠BAD,交AD于點(diǎn)G
∵∠ABC=60°,∠PBC=15°,AD⊥BD,
∴∠DAB=15°,
∵∠ABG=∠BAD,
∴∠ABG=∠BAG=15°,
∴∠BGD=30°,BG=AG,
∴BG=2BD,GD=BD,
∴AD=BD+2BD,
在Rt△ABD中,AB2=BD2+AD2.
∴(+)2=(+2)2 BD2+BD2.
∴BD=1,
∴AD=2+,
∵∠BAD=15°,∠BAC=60°,
∴∠DAP=45°,且AD⊥BD,
∴AP=AD=2+,
∵CP=AP-AC=AP-AB=2+-(+),
∴CP=.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2
(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.求y=-2x2+5x-3函數(shù)的“旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由y=-2x2+5x-3函數(shù)可知,a1=-2,b1=5,c1=-3,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請(qǐng)參考小明的方法解決下面的問(wèn)題:
(1)寫(xiě)出函數(shù)y=-2x2+5x-3的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)y1=x2+ x-n與y2=-x2-mx-2互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2019的值;
(3)已知函數(shù)y=(x-2)(x+3)的圖像與軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1、B1、C1,試證明經(jīng)過(guò)點(diǎn)A1、B1、C1的二次函數(shù)與函數(shù)y= (x-2)(x+3)互為“旋轉(zhuǎn)函數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P是⊙O上一點(diǎn),過(guò)點(diǎn)P作不過(guò)圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動(dòng)點(diǎn)A、B(不與P,Q重合),連接AP、BP. 若∠APQ=∠BPQ.
(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑;
(2)如圖2,選接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM上(不與P、M重合),連接ON、OP,若∠NOP+2∠OPN=90°,探究直線AB與ON的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.
(1)請(qǐng)你確定燈泡所在的位置,并畫(huà)出小亮在燈光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子長(zhǎng)AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面
的最大距離是5m.
(1)經(jīng)過(guò)討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因?yàn)樯嫌嗡畮?kù)泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的邊長(zhǎng)AD=6,AB=4,E為AB的中點(diǎn),F在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD∥BE∥CF,它們依次交直線l1、l2于點(diǎn)A、B、C和點(diǎn)D、E、F,,AC=14;
(1)求AB、BC的長(zhǎng);
(2)如果AD=7,CF=14,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)交軸于點(diǎn),交軸于點(diǎn),且與反比例函數(shù)的圖象交于,兩點(diǎn).
(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)過(guò)點(diǎn)作軸于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),求四邊形的面積;
(3)當(dāng)時(shí),的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C的坐標(biāo)為(1,).
(1)求圖象過(guò)點(diǎn)B的反比例函數(shù)的解析式;
(2)求圖象過(guò)點(diǎn)A,B的一次函數(shù)的解析式;
(3)在第一象限內(nèi),當(dāng)以上所求一次函數(shù)的圖象在所求反比例函數(shù)的圖象下方時(shí),請(qǐng)直接寫(xiě)出自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com