【題目】計劃建一個長方形養(yǎng)雞場,為了節(jié)省材料,利用一道足夠長的墻做為養(yǎng)雞場的一邊,另三邊用鐵絲網(wǎng)圍成,如果鐵絲網(wǎng)的長為35m

1)計劃建養(yǎng)雞場面積為150m2,則養(yǎng)雞場的長和寬各為多少?

2)能否建成的養(yǎng)雞場面積為160m2?如果能,請算出養(yǎng)雞場的長和寬;如果不能,請說明理由.

【答案】1)養(yǎng)雞場的長和寬各為15m、10m20m、7.5m;(2)不能,理由見解析

【解析】

1)設(shè)養(yǎng)雞場垂直于墻的一邊長為x米,則另一邊長為(352x)米,根據(jù)矩形面積公式即可列出方程,解方程即得結(jié)果;

2)若能建成,仿(1)題的方法列出方程,再根據(jù)一元二次方程的根的判別式檢驗即可得出結(jié)論.

解:(1)設(shè)養(yǎng)雞場垂直于墻的一邊長為x米,根據(jù)題意,得:

=150,解得:,,

當(dāng)時,==15;

當(dāng)時,==20;

答:養(yǎng)雞場的長和寬各為15m10m20m、7.5m

2)不能.理由如下:

若能建成,設(shè)養(yǎng)雞場垂直于墻的一邊長為y米,則有=160,即

,

∴此方程無解,所以無法建成面積為160m2的養(yǎng)雞場.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)軸、軸分別交于點、兩點,與正比例函數(shù)交于點

(1)求一次函數(shù)和正比例函數(shù)的表達式;

(2)若點為直線上的一個動點(點不與點重合),點在一次函數(shù)的圖象上,軸,當(dāng)時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△OAB中,OA=OB,⊙O經(jīng)過AB的中點C,與OB交于點D,且與BO的延長線交于點E,連接ECCD

(1)試判斷ABO的位置關(guān)系,并加以證明;

(2)若tanE=,⊙O的半徑為3,求OA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,點E、F分別在邊ABDC上,下列條件不能使四邊形EBFD是平行四邊形的條件是(

A.DE=BFB.AE=CFC.DEFBD.ADE=CBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(1)班數(shù)學(xué)老師將本班某次參加的數(shù)學(xué)競賽成績(得分取整數(shù),滿分100分)進行整理統(tǒng)計后,制成如下的頻數(shù)直方圖和扇形統(tǒng)計圖,請根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)在分?jǐn)?shù)段70.5~80.5分的頻數(shù)、頻率分別是多少?

2m、n的值分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列多面體,并把下表補充完整.

名稱

三棱柱

四棱柱

五棱柱

六棱柱

圖形

頂點數(shù)

6

10

12

棱數(shù)

9

12

面數(shù)

5

8

觀察上表中的結(jié)果,你能發(fā)現(xiàn)、之間有什么關(guān)系嗎?請寫出關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BD平分ABC,

1)作圖:作BC邊的垂直平分線分別交BCBD于點E,F(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);

2)在(1)的條件下,連接CF,若A=60°ABD=24°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,分別以點為圓心,大于的長為半徑作弧,兩弧交于點,作射線于點,交于點.若點的中點.

1)求證:

2)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,P是AB上的動點P異于A、B,過點P的直線截ABC,使截得的三角形與ABC相似,我們不妨稱這種直線為過點P的ABC的相似線,簡記為P,為自然數(shù)

1如圖,A=90°,B=C,當(dāng)BP=2PA時,P、P都是過點P的ABC的相似線其中BC,AC,此外還有_______條

2如圖C=90°,B=30°,當(dāng)_____時,P截得的三角形面積為ABC面積的

查看答案和解析>>

同步練習(xí)冊答案