【題目】如圖,Rt△ABC,∠B=90°,∠C=30°,O為AC上一點(diǎn),OA=2,以O(shè)為圓心,以O(shè)A為半徑的圓與CB相切于點(diǎn)E,與AB相交于點(diǎn)F,連接OE、OF,則圖中陰影部分的面積是_______.
【答案】π
【解析】
根據(jù)扇形面積公式以及三角形面積公式即可求出答案.
∵∠B=90°,∠C=30°,
∴∠A=60°,
∵OA=OF,
∴△AOF是等邊三角形,
∴∠COF=120°,
∵OA=2,
∴扇形OGF的面積為:=
∵OA為半徑的圓與CB相切于點(diǎn)E,
∴∠OEC=90°,
∴OC=2OE=4,
∴AC=OC+OA=6,
∴AB=AC=3,
∴由勾股定理可知:BC=3
∴△ABC的面積為:×3×3=
∵△OAF的面積為:×2×=,
∴陰影部分面積為:﹣﹣π=﹣π
故答案為:﹣π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮玩一個(gè)游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?說(shuō)說(shuō)你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=mx+n與反比例函數(shù)y= ,其中mn<0,m、n均為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,F是⊙O上一點(diǎn),∠BAF的平分線(xiàn)交⊙O于點(diǎn)E,交⊙O的切線(xiàn)BC于點(diǎn)C,過(guò)點(diǎn)E作ED⊥AF,交AF的延長(zhǎng)線(xiàn)于點(diǎn)D.
(1)求證:DE是⊙O的切線(xiàn);
(2)若DE=3,CE=2,
①求值;
②若點(diǎn)G 為AE上一點(diǎn),求OG+EG最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元,每周可賣(mài)出180件;如果每件商品的售價(jià)每上漲1元,則每周就會(huì)少賣(mài)出5件,但每件售價(jià)不能高于50元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每周的銷(xiāo)售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
(2)每件商品的售價(jià)為多少元時(shí),每周可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)每件商品的售價(jià)定為多少元時(shí),每周的利潤(rùn)恰好是2145元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AT是⊙O的切線(xiàn),OD⊥BC于點(diǎn)D,并且AT=10cm,AC=20cm,OD=4cm,則半徑OC=( 。
A. 8.5cm B. 8cm C. 9.5cm D. 9cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,BC=8,以CD為直徑作⊙O.將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),使所得矩形A′B′CD′的邊A′B′與⊙O相切,切點(diǎn)為E,則A′E的長(zhǎng)為( )
A. 8 B. 7 C. 6 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線(xiàn)交半圓O于點(diǎn)E,交AC于點(diǎn)C,使∠BED=∠C.
(1)判斷直線(xiàn)AC與圓O的位置關(guān)系,并證明你的結(jié)論;
(2)若AC=8,cos∠BED=,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A1,A2,A3,…都在y軸上,對(duì)應(yīng)的縱坐標(biāo)分別為1,2,3,….直線(xiàn)l1,l2,l3,…分別經(jīng)過(guò)點(diǎn)A1,A2,A3,…,且都平行于x軸.以點(diǎn)O為圓心,半徑為2的圓與直線(xiàn)l1在第一象限交于點(diǎn)B1,以點(diǎn)O為圓心,半徑為3的圓與直線(xiàn)l2在第一象限交于點(diǎn)B2,…,依此規(guī)律得到一系列點(diǎn)Bn(n為正整數(shù)),則點(diǎn)B1的坐標(biāo)為_____,點(diǎn)Bn的坐標(biāo)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com