如圖,上一點,點在直徑的延長線上,

(1)求證:的切線;
(2)過點的切線交的延長線于點,若BC=4,tan∠ABD=的長.
(1)通過求證明的切線 (2)

試題分析:1)證明:如圖(13),連結(jié)       

,
.             


的直徑,
,                

的切線.              
(2)解:∵
    
                     

          
,                
,∴.                    
的切線
,

,        
解得.                  
點評:本題考查直線與圓相切,要求考生掌握直線與圓的位置關(guān)系,并能利用相關(guān)知識來判定直線與圓的位置關(guān)系
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙O的半徑為2cm,弦AB的長為2,則這條弦的中點到弦所對優(yōu)弧的中點的距離為(  )
A.1cmB.3cmC.(2+)cmD.(2+)cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某包裝盒的展開圖,尺寸如圖所示(單位:cm)

(1)這個幾何體的名稱是            ;
(2)求這個包裝盒的表面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”,則半徑為2的“等邊扇形”的面積為(   )
A.B.1C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點軸的正半軸上, ⊙軸于 兩點,交軸于兩點,且的中點,軸于點,若點的坐標(biāo)為(-2,0),

(1)求點的坐標(biāo).                          
(2)連結(jié),求證:
(3) 如圖10-2,過點作⊙的切線,交軸于點.動點在⊙的圓周上運動時,的比值是否發(fā)生變化,若不變,求出比值;若變化,說明變化規(guī)律

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,OAOB是⊙O的兩條半徑,且OAOB,點C在⊙O上,則∠ACB的度數(shù)為
 
A.45°B.35°C.25°D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列四個命題:(1)如果某圓錐的側(cè)面展開圖是半圓,則底面半徑和母線之比為1:2;(2)若點A在直線y=2x-3上,且點A到兩坐標(biāo)軸的距離相等,則點A在第一或第四象限;
(3)半徑為5的圓中,弦AB=8,則圓周上到直線AB的距離為2的點共有四個;(4)若A(a,m)、B(a -1,n)(a0)在反比例函數(shù)的圖象上,則mn.其中,正確命題的個數(shù)是
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形,,已知,點邊上的動點,連接,以為圓心,為半徑的⊙分別交射線于點,交射線于點,交射線,連接.
 
(1)求的長.
(2)當(dāng)時,求的長.
(3)在點的運動過程中,
①當(dāng)時,求⊙的半徑.
②當(dāng)時,求⊙的半徑(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在BAEO中,AB=2BO,AB=6,以點O為圓心,OB為半徑畫⊙O分別交AB、OE于點D、C,且點D恰好是AB的中點,則劣弧的長是   。 

查看答案和解析>>

同步練習(xí)冊答案