【題目】如果向東走10米記作+10米,那么向西走20米記作( )
A.20米
B.﹣20米
C.10米
D.﹣10米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證:四邊形AFCE為菱形;
(2)如圖1,求AF的長;
(3)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過程中,已知點(diǎn)P的速度為每秒1cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①問在運(yùn)動(dòng)的過程中,以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形有可能是矩形嗎?若有可能,請(qǐng)求出運(yùn)動(dòng)時(shí)間t和點(diǎn)Q的速度,若不可能,請(qǐng)說明理由;
②若點(diǎn)Q的速度為每秒0.8cm,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣2x2﹣4x+8的開口_____,對(duì)稱軸_____,頂點(diǎn)坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把y=-x2+4x-2化成y=a(x+m)2+n的形式,m,n的值分別是( )
A.m=-2,n=-2B.m=-2,n=-6C.m=2,n=-2D.m=-2,n=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個(gè)數(shù)為( )
①過一點(diǎn)有無數(shù)條直線與已知直線平行;
②經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行;
③如果兩條線段不相交,那么它們就平行;
④如果兩條直線不相交,那么它們就平行.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是反比例函數(shù)y= 的圖象的一支.根據(jù)給出的圖象回答下列問題:
(1)該函數(shù)的圖象位于哪幾個(gè)象限?請(qǐng)確定m的取值范圍
(2)在這個(gè)函數(shù)圖象的某一支上取點(diǎn)A(x1 , y1)、B(x2 , y2).如果y1<y2 , 那么x1與x2有怎樣的大小關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列推理說明:
(1)如圖1,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下: 因?yàn)椤?=∠2(已知),且∠1=∠4()
所以∠2=∠4(等量代換)
所以CE∥BF()
所以∠=∠3()
又因?yàn)椤螧=∠C(已知)
所以∠3=∠B(等量代換)
所以AB∥CD()
(2)如圖2,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE. 證明:∵∠B+∠BCD=180°(已知),
∴AB∥CD ()
∴∠B=()
又∵∠B=∠D(已知),
∴∠=∠(等量代換)
∴AD∥BE()
∴∠E=∠DFE()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列句子中不是命題的有( )
A. 玫瑰花是動(dòng)物 B. 美麗的天空
C. 相等的角是對(duì)頂角 D. 負(fù)數(shù)都小于零
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com