【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點A、B、O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn),分別得到圖②、圖③、…,則旋轉(zhuǎn)得到的圖⑩的直角頂點的坐標為 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2個單位,一只烏龜從A點出發(fā)以2個單位/秒的速度順時針繞正方形運動,另有一只兔子也從A點出發(fā)以6個單位/秒的速度逆時針繞正方形運動,則第2018次相遇在( 。
A. 點A B. 點B C. 點C D. 點D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明設計了一個問題,分兩步完成:
(1)已知關(guān)于x的一元一次方程,請畫出數(shù)軸,并在數(shù)軸上標注a與對應的點,分別記作A,B;
(2)在第1問的條件下,在數(shù)軸上另有一點C對應的數(shù)為y,C與A的距離是C與B的距離的5倍,且C在表示5的點的左側(cè),求y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有學生2100人,在“文明我先行”活動中,開設了“法律、禮儀、環(huán)保、感恩、互助”五門校本課程,規(guī)定每位學生必須且只能選一門,為了解學生的報名意向,學校隨機調(diào)查了100名學生,并制成統(tǒng)計表:校本課程意向統(tǒng)計表
課程類型 | 頻數(shù) | 頻率(%) |
法律 | s | 0.08 |
禮儀 | a | 0.20 |
環(huán)保 | 27 | 0.27 |
感恩 | b | m |
互助 | 15 | 0.15 |
合計 | 100 | 1.00 |
請根據(jù)統(tǒng)計表的信息,解答下列問題;
(1)在這次調(diào)查活動中,學校采取的調(diào)查方式是(填寫“普查”或“抽樣調(diào)查”);
(2)a= , b= , m=;
(3)如果要畫“校本課程報名意向扇形統(tǒng)計圖”,那么“禮儀”類校本課程對應的扇形圓心角的度數(shù)是;
(4)請你估計,選擇“感恩”類校本課程的學生約有人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一直角坐標系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.
(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點,一塊足夠大的三角板的直角頂點與點E重合,將三角板繞點E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點M,N,設∠AEM=α(0°<α<90°),給出下列四個結(jié)論: ①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④S△EMN= .
上述結(jié)論中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點,連接OF并延長交弧AC于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=2時,求出四邊形ACDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,其外角平分線AD交⊙O于D,DM⊥AC于M,下列結(jié)論中正確的是
①DB=DC;
②AC+AB=2CM;
③AC﹣AB=2AM;
④S△ABD=S△ABC .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com