如圖,菱形ABCD中,點(diǎn)O是對(duì)角線AC上一點(diǎn),OA=AD,且OB=OC=OD=1,則該菱形的邊長(zhǎng)為(  )
A.
1+
5
2
B.
5
-1
2
C.1D.2

設(shè)AD=a,
∵∠BAC=∠BCA=∠OBC=∠OCB,
∴△BOC△ABC,
所以
BO
AB
=
CB
AC
,
1
a
=
a
a+1
,
所以,a2-a-1=0.
由a>0,
解得a=
1+
5
2

故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在菱形ABCD中,E是AB的中點(diǎn),作EFBC,交AC于點(diǎn)F、如果EF=4,那么CD的長(zhǎng)為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在菱形ABCD中,E、F是對(duì)角線AC上的兩點(diǎn),且AE=CF.
(1)圖中有那幾對(duì)全等三角形,請(qǐng)一一列舉;
(2)求證:EDBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.
求證:四邊形AEFG是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:四邊形ABCD是菱形,對(duì)角線AC與BD相交于O,菱形ABCD的周長(zhǎng)是20,BD=6.
(1)求AC的長(zhǎng).
(2)求菱形ABCD的高DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,∠B>∠A,點(diǎn)D為邊AB的中點(diǎn),DEBC交AC于點(diǎn)E,CFAB交DE的延長(zhǎng)線于點(diǎn)F.
(1)求證:DE=EF;
(2)連結(jié)CD,過(guò)點(diǎn)D作DC的垂線交CF的延長(zhǎng)線于點(diǎn)G,求證:∠B=∠A+∠DGC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O.點(diǎn)E為邊AB的中點(diǎn),且BD=6,
AC=8,則OE長(zhǎng)為(  )
A.2B.2.5C.2.4D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,菱形ABCD中,對(duì)角線AC,BD交于點(diǎn)0,若AC=6cm,BD=8cm.則菱形ABCD的周長(zhǎng)為_(kāi)_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△OPQ中,∠POQ=90°,∠Q=30°,OP=4
3
.四邊形ABCD是菱形,點(diǎn)A在邊PQ上,B、C在邊QO上(B點(diǎn)在C點(diǎn)的左側(cè)),且∠ABC=60°.設(shè)BQ=x.
(1)試用含x的代數(shù)式表示菱形ABCD的邊長(zhǎng);
(2)當(dāng)點(diǎn)D在線段OP上時(shí),求x的值;
(3)設(shè)菱形ABCD與△OPQ重合部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式;
(4)連接PD、OD.對(duì)于不同的x值,請(qǐng)你比較線段OD與PD的大小關(guān)系,直接寫(xiě)出結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案