【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y的圖象與直線yx+1交于點(diǎn)A(1,a).

(1)求a,k的值;

(2)連結(jié)OA,點(diǎn)P是函數(shù)y上一點(diǎn),且滿足OPOA,直接寫(xiě)出點(diǎn)P的坐標(biāo)(點(diǎn)A除外).

【答案】(1)a=2,k=2;(2)P的坐標(biāo)為(﹣1,﹣2),(2,1),(﹣2,﹣1).

【解析】

(1)將點(diǎn)A(1,a)代入yx+1,求出a的值,得到A點(diǎn)坐標(biāo),再把A點(diǎn)坐標(biāo)代入y,求出k的值;

(2)設(shè)點(diǎn)P的坐標(biāo)為(x,),根據(jù)OPOA列出方程x2+(2=12+22,解方程即可.

解:(1)∵直線yx+1經(jīng)過(guò)點(diǎn)A(1,a),

a=1+1=2,

A(1,2).

∵函數(shù)y的圖象經(jīng)過(guò)點(diǎn)A(1,2),

k=1×2=2;

(2)設(shè)點(diǎn)P的坐標(biāo)為(x),

OPOA,

x2+(2=12+22

化簡(jiǎn)整理,得x4﹣5x2+4=0,

解得x1=1,x2=﹣1,x3=2,x4=﹣2,

經(jīng)檢驗(yàn),x1=1,x2=﹣1,x3=2,x4=﹣2都是原方程的根,

∵點(diǎn)P與點(diǎn)A不重合,

∴點(diǎn)P的坐標(biāo)為(﹣1,﹣2),(2,1),(﹣2,﹣1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有長(zhǎng)為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度 a 10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬 AB xm,面積為 Sm2

1 S x 的函數(shù)關(guān)系式及 x 值的取值范圍;

2 要圍成面積為 45m2 的花圃,AB 的長(zhǎng)是多少米?

3 當(dāng) AB 的長(zhǎng)是多少米時(shí),圍成的花圃的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正確的個(gè)數(shù)為(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出以下結(jié)論:abc0 b24ac0 4b+c0 若B(﹣,y1)、C,y2)為函數(shù)圖象上的兩點(diǎn),則y1y2當(dāng)﹣3≤x≤1時(shí),y≥0,

其中正確的結(jié)論是(填寫(xiě)代表正確結(jié)論的序號(hào))__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=+bx+c的圖象經(jīng)過(guò)點(diǎn)A(1,0),且當(dāng)x=0和x=5時(shí)所對(duì)應(yīng)的函數(shù)值相等.一次函數(shù)y=x+3與二次函數(shù)y=+bx+c的圖象分別交于B,C兩點(diǎn),點(diǎn)B在第一象限.

(1)求二次函數(shù)y=+bx+c的表達(dá)式;

(2)連接AB,求AB的長(zhǎng);

(3)連接AC,M是線段AC的中點(diǎn),將點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小清為班級(jí)辦黑板報(bào)時(shí)遇到一個(gè)難題,在版面設(shè)計(jì)過(guò)程中需要將一個(gè)半圓三等分,小華幫他設(shè)計(jì)了一個(gè)尺規(guī)作圖的方法.

小華的作法如下:

(1)作AB的垂直平分線CDAB于點(diǎn)O;

(2)分別,以A、B為圓心,以AO(或BO)的長(zhǎng)為半徑畫(huà)弧,分別交半圓于點(diǎn)M、N;

(3)連接OM、ON即可

請(qǐng)根據(jù)該同學(xué)的作圖方法完成以下推理:

∵半圓AB

   是直徑.

CD是線段AB的垂直平分線

OAOB(依據(jù):   

OAOM   

∴△OAM為等邊三角形(依據(jù):   

∴∠AOM=60°(依據(jù):   

同理可得∠BON=60°

AOM=∠BON=∠MON=60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是半圓的圓心,半徑為4.CE是圓上的兩點(diǎn),CDABEFAB,EGCO.若COA=60°,則FG=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將矩形OABC如圖放置,O為原點(diǎn).若點(diǎn)A(﹣1,2),點(diǎn)B的縱坐標(biāo)是,則點(diǎn)C的坐標(biāo)是( 。

A. (4,2) B. (2,4) C. ,3) D. (3,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:如圖,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過(guò)點(diǎn) A,BD⊥m 于點(diǎn) D,CE⊥m 于點(diǎn) E,求證:△ABD≌△CAE.

應(yīng)用:如圖,在△ABC 中,AB=AC,D、A、E 三點(diǎn)都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.

查看答案和解析>>

同步練習(xí)冊(cè)答案