【題目】如圖,正方形網(wǎng)格中有ABC,若小方格邊長為1,請你根據(jù)所學(xué)的知識解答下列問題:

(1)判斷ABC是什么形狀?并說明理由.

(2)求ABCBC邊上的高.

【答案】(1)△ABC是直角三角形.理由見解析;(2)

【解析】

(1)根據(jù)勾股定理分別求出AB、BC、AC的長,再根據(jù)勾股定理的逆定理判斷出三角形ABC的形狀;

(2)設(shè)AC邊上的高為h.根據(jù)ABC的面積不變列出方程ACh=ABBC,得出h=,代入數(shù)值計(jì)算即可.

解:(1)ABC是直角三角形.理由如下:

RtABC中,AB==;

RtAEC中,AC=;

RtBDC中,BC=;

AB2+BC2=AC2,

∴∠B=90°,ABC是直角三角形;

(2)設(shè)AC邊上的高為h.

SABC=ACh=ABBC,

h==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校招聘一名數(shù)學(xué)老師,對應(yīng)聘者分別進(jìn)行了教學(xué)能力、科研能力和組織能力三項(xiàng)測試,其中甲、乙兩名應(yīng)聘者的成績?nèi)缬冶恚海▎挝唬悍郑?/span>

教學(xué)能力

科研能力

組織能力

81

85

86

92

80

74

(1)若根據(jù)三項(xiàng)測試的平均成績在甲、乙兩人中錄用一人,那么誰將被錄用?

(2)根據(jù)實(shí)際需要,學(xué)校將教學(xué)、科研和組織能力三項(xiàng)測試得分按 5:3:2 的比確定每人的最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市開展“美麗自宮,創(chuàng)衛(wèi)同行”活動(dòng),某校倡議學(xué)生利用雙休日在“花海”參加義務(wù)勞動(dòng),為了解同學(xué)們勞動(dòng)情況,學(xué)校隨機(jī)調(diào)查了部分同學(xué)的勞動(dòng)時(shí)間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息回答下列問題:

(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)扇形圖中的“1.5小時(shí)”部分圓心角是多少度?

(3)求抽查的學(xué)生勞動(dòng)時(shí)間的眾數(shù)、中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠E=50°,BAC=50°,D=110°,求∠ABD的度數(shù).

請完善解答過程,并在括號內(nèi)填寫相應(yīng)的理論依據(jù).

解:∵∠E=50°,BAC=50°,(已知)

∴∠E=   (等量代換)

      .(   

∴∠ABD+D=180°.(   

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD,點(diǎn)E是邊AD上一點(diǎn),過點(diǎn)E作EF⊥BC,垂足為點(diǎn)F,將△BEF繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn),使點(diǎn)B落在邊BC上的點(diǎn)N處,點(diǎn)F落在邊DC上的點(diǎn)M處,如果點(diǎn)M恰好是邊DC的中點(diǎn),那么 的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系.

(1)B出發(fā)時(shí)與A相距   千米.

(2)B走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是   小時(shí).

(3)B出發(fā)后   小時(shí)與A相遇.

(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式.

(5)若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),   小時(shí)與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn)   千米.在圖中表示出這個(gè)相遇點(diǎn)C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D在邊AC上,點(diǎn)E是BD的中點(diǎn),CE的延長線交邊AB于點(diǎn)F,且∠CED=∠A.
(1)求證:AC=AF;
(2)在邊AB的下方畫∠GBA=∠CED,交CF的延長線于點(diǎn)G,聯(lián)結(jié)DG,在圖中畫出圖形,并證明四邊形CDGB是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,射線OM平分∠AOC,ON⊥OM.

(1)若∠BOD=70°,求∠AOM和∠CON的度數(shù);

(2)若∠BON=50°,求∠AOM和∠CON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰ABC的底邊長為8cm,腰長為5cm,一動(dòng)點(diǎn)P在底邊上從B向C以0.25cm/s的速度移動(dòng),請你探究:當(dāng)P運(yùn)動(dòng)秒時(shí),P點(diǎn)與頂點(diǎn)A的連線PA與腰垂直。

查看答案和解析>>

同步練習(xí)冊答案