【題目】問題發(fā)現(xiàn):如圖1,在△ABC中,∠C=90°,分別以AC,BC為邊向外側(cè)作正方形ACDE和正方形BCFG.
(1)△ABC和△DCF面積的關(guān)系是______________;(請在橫線上填寫“相等”或“不等”)
(2)拓展探究:若∠C≠90°,(1)中的結(jié)論還成立嗎?若成立,請結(jié)合圖2給出證明;若不成立,請說明理由;
(3)解決問題:如圖3,在四邊形ABCD中,AC⊥BD,且AC與BD的和為10,分別以四邊形ABCD的四條邊為邊向外側(cè)作正方形ABFE、正方形BCHG、正方形CDJI,正方形DALK,運用(2)的結(jié)論,圖中陰影部分的面積和是否有最大值?如果有,請求出最大值,如果沒有,請說明理由.
圖1
圖2
圖3
【答案】(1)相等;(2)成立,理由見解析;(3)陰影部分的面積和有最大值,最大值為25
【解析】解:(1)相等;
(2)成立;理由如下:
如圖,延長BC到點P,過點A作AP⊥BP于點P;過點D作DQ⊥FC于點Q.
∴∠APC=∠DQC=90°.
∵四邊形ACDE、四邊形BCFG均為正方形,
∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,
∴∠ACP=∠DCQ.
∴△APC≌△DQC(AAS),
∴AP=DQ.
又∵S△ABC=BCAP,S△DFC =FCDQ,
∴S△ABC=S△DFC.
(3)圖中陰影部分的面積和有最大值
理由:由(2)的結(jié)論可知:
設(shè)AC=m,則BD=10-m, ∵AC⊥BD.
∴.
∴
∴陰影部分的面積和有最大值,最大值為25
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)軸上,點A所表示的實數(shù)為2,點B所表示的實數(shù)為a,⊙A的半徑為3,若點B在⊙A外,則a的值可能是( )
A.﹣1B.0C.5D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,CD⊥AB于點D,BE⊥AC于點E,BE與CD相交于點O.
(1)求證:AD=AE;
(2)試猜想:OA與BC的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,點A(2,0),點B (0,1),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點C落在點D處,若以A,D,P為頂點的三角形與△ABP相似,則所有滿足此條件的點P的坐標為___________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.從下列四個條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個為條件,余下的一個為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.
(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側(cè)的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)直線BF垂直于CE于點F,交CD于點G(如圖l),求證:AE=CG;
(2)直線AH垂直于CE,垂足為H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段(不需要添加輔助線),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com