【題目】如圖,已知拋物線(xiàn)y=ax2+2x+8x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且B(4,0).

(1)求拋物線(xiàn)的解析式及其頂點(diǎn)D的坐標(biāo);

(2)如果點(diǎn)P(p,0)是x軸上的一個(gè)動(dòng)點(diǎn),則當(dāng)|PC﹣PD|取得最大值時(shí),求p的值;

(3)能否在拋物線(xiàn)第一象限的圖象上找到一點(diǎn)Q,使△QBC的面積最大,若能,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

【答案】(1) y=﹣(x﹣1)2+9 ,D(1,9); (2)p=﹣8;(3)存在點(diǎn)Q(2,8)使△QBC的面積最大.

【解析】

(1)把點(diǎn)B的坐標(biāo)代入y=ax2+2x+8求得a的值,即可得到該拋物線(xiàn)的解析式再把所得解析式配方化為頂點(diǎn)式,即可得到拋物線(xiàn)頂點(diǎn)D的坐標(biāo);

(2)由題意可知點(diǎn)P在直線(xiàn)CD上時(shí),|PC﹣PD|取得最大值,因此求得點(diǎn)C的坐標(biāo),再求出直CD的解析式,即可求得符合條件的點(diǎn)P的坐標(biāo),從而得到p的值;

(3)由(1)中所得拋物線(xiàn)的解析式設(shè)點(diǎn)Q的坐標(biāo)為(m,﹣m2+2m+8)(0<m<4),然后用含m的代數(shù)式表達(dá)出△BCQ的面積,并將所得表達(dá)式配方化為頂點(diǎn)式即可求得對(duì)應(yīng)點(diǎn)Q的坐標(biāo).

(1)∵拋物線(xiàn)y=ax2+2x+8經(jīng)過(guò)點(diǎn)B(4,0),

16a+8+8=0,

a=﹣1,

∴拋物線(xiàn)的解析式為y=﹣x2+2x+8=﹣(x﹣1)2+9,

D(1,9);

(2)∵當(dāng)x=0時(shí),y=8,

C(0,8).

設(shè)直線(xiàn)CD的解析式為y=kx+b.

將點(diǎn)C、D的坐標(biāo)代入得:,解得:k=1,b=8,

∴直線(xiàn)CD的解析式為y=x+8.

當(dāng)y=0時(shí),x+8=0,解得:x=﹣8,

∴直線(xiàn)CDx軸的交點(diǎn)坐標(biāo)為(﹣8,0).

∵當(dāng)P在直線(xiàn)CD上時(shí),|PC﹣PD|取得最大值,

p=﹣8;

(3)存在,

理由:如圖,由(2)知,C(0,8),

B(4,0),

∴直線(xiàn)BC的解析式為y=﹣2x+8,

過(guò)點(diǎn)QQEy軸交BCE,

設(shè)Q(m,﹣m2+2m+8)(0<m<4),則點(diǎn)E的坐標(biāo)為:(m,﹣2m+8),

EQ=﹣m2+2m+8﹣(﹣2m+8)=﹣m2+4m,

SQBC=(﹣m2+4m)×4=﹣2(m﹣2)2+8,

∴m=2時(shí),SQBC最大,此時(shí)點(diǎn)Q的坐標(biāo)為:(2,8).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線(xiàn),ADCD于點(diǎn)D.EAB延長(zhǎng)線(xiàn)上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OCAC.

(1)求證AC平分∠DAO;

(2)若∠DAO=105°,E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線(xiàn)段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOOM,OA=8,點(diǎn)B為射線(xiàn)OM上的一個(gè)動(dòng)點(diǎn),分別以OB、AB為直角邊,B為直角頂點(diǎn),在OM兩側(cè)作等腰RtOBF、等腰RtABE,連接EFOMP點(diǎn),當(dāng)點(diǎn)B在射線(xiàn)OM上移動(dòng)時(shí),PB的長(zhǎng)度是 ( )

A. 3.6 B. 4 C. 4.8 D. PB的長(zhǎng)度隨B點(diǎn)的運(yùn)動(dòng)而變化

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD,等邊ABE已知BAC=30°,EFAB,垂足為F,連接DF

(1)試說(shuō)明AC=EF;

(2)求證:四邊形ADFE是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB的大小為α,P是∠AOB內(nèi)部的一個(gè)定點(diǎn),且OP2,點(diǎn)E、F分別是OA、OB上的動(dòng)點(diǎn),若△PEF周長(zhǎng)的最小值等于2,則α=(

A. 30°B. 45°C. 60°D. 15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論中:

①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).

其中正確的結(jié)論有(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾不落地,城市更美麗.某中學(xué)為了了解七年級(jí)學(xué)生對(duì)這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對(duì)學(xué)生是否隨手丟垃圾這一情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來(lái)不辜負(fù)不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)以上信息,解答下列問(wèn)題:

(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)所抽取學(xué)生是否隨手丟垃圾情況的眾數(shù)是   ;

(3)若該校七年級(jí)共有1500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生中經(jīng)常隨手丟垃圾的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)邊長(zhǎng)為3的等邊△ABC的邊AB上一點(diǎn)P,作PEACE,QBC延長(zhǎng)線(xiàn)上一點(diǎn),當(dāng)PACQ時(shí),連PQAC邊于D,則DE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿(mǎn)足∠BAC=∠APC=60°,

(1)求證:△ABC是等邊三角形;

(2)求圓心O到BC的距離OD.

查看答案和解析>>

同步練習(xí)冊(cè)答案