【題目】對(duì)于給定函數(shù)y=a1x2+b1x+c1(其中a1、b1、c1為常數(shù),且a1≠0),則稱函數(shù)y=(a1=a2,b1+b2=0,c1+c2=0)為函數(shù)y=a1x2+b1x+c1(其中a1,b1,c1為常數(shù),且a1≠0)的“相關(guān)函數(shù)”,此“相關(guān)函數(shù)”的圖象記為G.
(1)已知函數(shù)y=﹣x2+4x+2.
①直接寫出這個(gè)函數(shù)的“相關(guān)函數(shù)”;
②若點(diǎn)P(a,1)在“相關(guān)函數(shù)”的圖象上,求a的值;
③若直線y=m與圖象G恰好有兩個(gè)公共點(diǎn),直接寫出m的取值范圍;
(2)設(shè)函數(shù)y=﹣x2+nx+1(n>0)的相關(guān)函數(shù)的圖象G在﹣4≤x≤2上的最高點(diǎn)的縱坐標(biāo)為y0,當(dāng)≤y0≤9時(shí),直接寫出n的取值范圍.
【答案】(1)①y=;②a的值為﹣3或﹣1或2+;③m≤﹣2或2<m<6;(2)1≤n≤2或n≥
【解析】
(1)①直接利用“相關(guān)函數(shù)”得出結(jié)論;
②分a≥0和a<0,代入相關(guān)函數(shù)關(guān)系式中,即可得出結(jié)論;
③畫出函數(shù)圖象,直接寫出結(jié)論;
(2)先得出y=﹣x2+nx+1(n>0)的“相關(guān)函數(shù)”,再分情況,借助圖象即可得出結(jié)論.
解:(1)①由“相關(guān)函數(shù)”得出y=;
②∵點(diǎn)P(a,1)在“相關(guān)函數(shù)”的圖象上,
當(dāng)a≥0時(shí),﹣a2+4a+2=1,
解得,a=2+或a=2﹣(舍),
當(dāng)a<0時(shí),﹣a2﹣4a﹣2=1,
解得,a=﹣1或a=﹣3,
即:a的值為﹣3或﹣1或2+;
③如圖1,
由①知,y=,
當(dāng)直線y=m與圖象G恰好有兩個(gè)公共點(diǎn),
由圖象知,m≤﹣2或2<m<6;
(2)由題意知,函數(shù)y=﹣x2+nx+1(n>0)的“相關(guān)函數(shù)”為y=,
而n2+1>n2﹣1,
①當(dāng)n2﹣1>1時(shí),如圖2,
∴n<﹣2(舍)或n>2,
Ⅰ、當(dāng)n≥4時(shí),
當(dāng)x=2時(shí),y=﹣4+2n+1=2n﹣3,
當(dāng)x=﹣4時(shí),y=﹣8+4n﹣1=4n﹣9,
i)當(dāng)2n﹣3>4n﹣9,
∴n<3,此種情況不存在;
ii)當(dāng)2n﹣3≤4n﹣9,
∴n>3,
即:n≥4,
Ⅱ、當(dāng)2<n<4時(shí),
當(dāng)x=2時(shí),y=﹣4+2n+1=2n﹣3
i)當(dāng)2n﹣3>n2﹣1,
∴(n﹣2)2<0,不符合題意,
ii)當(dāng)2n﹣3≤n2﹣1,
∴(n﹣2)2≥0,
此時(shí),y0=n2﹣1,
∵≤y0≤9,
∴≤n2﹣1≤9,
∴≤n≤2,
即:≤n<4,
②當(dāng)0<n≤2時(shí),
如圖3,而n2+1>n2﹣1,
∴≤n2+1≤9,
∴1≤n≤4,
∴1≤n≤2,
即:1≤n≤2或n≥.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果公司購(gòu)進(jìn)10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機(jī)抽取若干進(jìn)行統(tǒng)計(jì),部分結(jié)果如下表:
蘋果總質(zhì)量n(kg) | 100 | 200 | 300 | 400 | 500 | 1000 |
損壞蘋果質(zhì)量m(kg) | 10.50 | 19.42 | 30.63 | 39.24 | 49.54 | 101.10 |
蘋果損壞的頻率 (結(jié)果保留小數(shù)點(diǎn)后三位) | 0.105 | 0.097 | 0.102 | 0.098 | 0.099 | 0.101 |
估計(jì)這批蘋果損壞的概率為_____(結(jié)果保留小數(shù)點(diǎn)后一位),損壞的蘋果約有______kg.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸交于A(﹣2,0),B(8,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=2OA,拋物線的對(duì)稱軸x軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)點(diǎn)P是第一象限內(nèi)拋物線上位于對(duì)稱軸右側(cè)的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P點(diǎn)的橫坐標(biāo)為m,且S△CDP=S△ABC,求m的值;
(3)K是拋物線上一個(gè)動(dòng)點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)H,使B、C、K、H為頂點(diǎn)的四邊形成為矩形?若存在,直接寫出點(diǎn)H的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為助力我省脫貧攻堅(jiān),某村在“農(nóng)村淘寶網(wǎng)店”上銷售該村優(yōu)質(zhì)農(nóng)產(chǎn)品,該網(wǎng)店于今年六月底收購(gòu)一批農(nóng)產(chǎn)品,七月份銷售袋,八、九月該商品十分暢銷,銷售量持續(xù)走高,在售價(jià)不變的基礎(chǔ)上,九月份的銷售量達(dá)到袋.
(1)求八、九這兩個(gè)月銷售量的月平均增長(zhǎng)率;
(2)該網(wǎng)店十月降價(jià)促銷,經(jīng)調(diào)查發(fā)現(xiàn),若該農(nóng)產(chǎn)品每袋降價(jià)元,銷售量可增加袋,當(dāng)農(nóng)產(chǎn)品每袋降價(jià)多少元時(shí),這種農(nóng)產(chǎn)品在十月份可獲利元?(若農(nóng)產(chǎn)品每袋進(jìn)價(jià)元,原售價(jià)為每袋元)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)傳統(tǒng)文化,某校開(kāi)展了“傳承經(jīng)典文化,閱讀經(jīng)典名著”活動(dòng).為了解七、八年級(jí)學(xué)生(七、八年級(jí)各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識(shí)競(jìng)賽.現(xiàn)從兩個(gè)年級(jí)各隨機(jī)抽取20名學(xué)生的競(jìng)賽成績(jī)(百分制)進(jìn)行分析,過(guò)程如下:
收集數(shù)據(jù):
七年級(jí):79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級(jí):92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
七年級(jí) | 0 | 1 | 0 | a | 7 | 1 |
八年級(jí) | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級(jí) | 78 | 75 | |
八年級(jí) | 78 | 80.5 |
應(yīng)用數(shù)據(jù):
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計(jì)該校七、八兩個(gè)年級(jí)學(xué)生在本次競(jìng)賽中成績(jī)?cè)?/span>90分以上的共有多少人?
(3)你認(rèn)為哪個(gè)年級(jí)的學(xué)生對(duì)經(jīng)典文化知識(shí)掌握的總體水平較好,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,.點(diǎn)是的中點(diǎn).
(1)求長(zhǎng)和的值.
(2)以點(diǎn)為圓心,為半徑作.如果點(diǎn)在內(nèi),點(diǎn)在外,試求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),經(jīng)過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)E , 交EC的延長(zhǎng)線于點(diǎn)D,連接AC .
(1)求證: AC平分∠DAE ;
(2)若,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用兩種方法證明“圓的內(nèi)接四邊形對(duì)角互補(bǔ)”.
已知:如圖①,四邊形ABCD內(nèi)接于⊙O.
求證:∠B+∠D=180°.
證法1:如圖②,作直徑DE交⊙O于點(diǎn)E,連接AE、CE.
∵DE是⊙O的直徑,
∴ .
∵∠DAE+∠AEC+∠DCE+∠ADC=360°,
∴∠AEC+∠ADC=360°-∠DAE-∠DCE=360°-90°-90°=180°.
∵∠B和∠AEC所對(duì)的弧是,
∴ .
∴∠B+∠ADC=180°.
請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.
證法2:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖Rt△ABC中,∠ABC=90°,AB=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB邊以1cm/秒的速度向點(diǎn)B勻速移動(dòng),同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊以2cm/秒的速度向點(diǎn)C勻速移動(dòng),當(dāng)P、Q兩點(diǎn)中有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止運(yùn)動(dòng).運(yùn)動(dòng)( 。┟牒,△PBQ面積為5cm2.
A.0.5B.1C.5D.1或5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com