【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A,C的坐標(biāo)分別為A(﹣30),C1,0),tan∠BAC=

1)求過(guò)點(diǎn)A,B的直線的函數(shù)表達(dá)式;

2)在x軸上找一點(diǎn)D,連接BD,使得△ADB△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo);

3)在(2)的條件下,如P,Q分別是ABAD上的動(dòng)點(diǎn),連接PQ,設(shè)AP=DQ=m,問(wèn)是否存在這樣的m使得△APQ△ADB相似?如存在,請(qǐng)求出的m值;如不存在,請(qǐng)說(shuō)明理由.

【答案】1B1,3);(2D,0);(3)這樣的m存在.m=

【解析】

試題(1)根據(jù)點(diǎn)A、C的坐標(biāo)求出AC的長(zhǎng),根據(jù)題意求出點(diǎn)B的坐標(biāo),利用待定系數(shù)法求出過(guò)點(diǎn)A,B的直線的函數(shù)表達(dá)式;(2)過(guò)點(diǎn)BBDAB,交x軸于點(diǎn)D,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可;(3)分PQBD時(shí)和PQAD時(shí)兩種情況,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.

試題解析:(1)∵點(diǎn)A(3,0),C(1,0),

AC=4,BC=AC,

BC=3,

B點(diǎn)坐標(biāo)為(1,3),

設(shè)過(guò)點(diǎn)A,B的直線的函數(shù)表達(dá)式為:y=kx+b

,

解得

∴直線AB的函數(shù)表達(dá)式為:y=x+;

(2)如圖1,過(guò)點(diǎn)BBDAB,交x軸于點(diǎn)D,

∵∠A=AABD=ACB,

ADBABC

D點(diǎn)為所求,

ADBABC,

,=

解得,CD=,

OD=OC+CD=

∴點(diǎn)D的坐標(biāo)為(,0);

(3)RtABC,由勾股定理得AB==5,

如圖2,當(dāng)PQBD時(shí),APQABD,

,

解得,m=

如圖3,當(dāng)PQAD時(shí),APQADB,

解得,m=,

所以若APQADB相似時(shí),m=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共10只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)

100

150

200

500

800

1000

摸到白球的次數(shù)

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

1)請(qǐng)估計(jì):當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近   ;(保留二個(gè)有效數(shù)字)

2)試估算口袋中黑、白兩種顏色的球各有多少只?

3)請(qǐng)畫樹狀圖或列表計(jì)算:從中一次摸兩只球,這兩只球顏色不同的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三個(gè)邊長(zhǎng)分別為1,2,3的正三角形從左到右如圖排列,則圖中陰影部分面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=3,AD=5,AE平分∠BAD,交BCF,交DC延長(zhǎng)線于E,則的值為(

A.B.C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)D為銳角ABC內(nèi)一點(diǎn),∠ADB=ACB+90°,過(guò)點(diǎn)BBEBD,BE=BD,連接EC

1)求∠CAD+CBD的度數(shù);

2)若,

①求證:ACD∽△BCE

②求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象相交于點(diǎn).

1)求出反比例函數(shù)的表達(dá)式并直接寫出的值;

2)根據(jù)圖象,直接寫出時(shí),的取值范圍;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,以AB為直徑的圓交AC于點(diǎn)D,EBC的中點(diǎn),連接DE.

1)求證:DE的切線;

2)設(shè)的半徑為r,證明;

3)若,求AD之長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A在拋物線yx2bxcb>0)上,且A(1,-1),

(1)若bc=4,b,c的值;

(2)若該拋物線與y軸交于點(diǎn)B其對(duì)稱軸與x軸交于點(diǎn)C,則命題“對(duì)于任意的一個(gè)k0<k1),都存在b,使得OCk·OB.”是否正確?若正確,請(qǐng)證明;若不正確,請(qǐng)舉反例;

(3)將該拋物線平移,平移后的拋物線仍經(jīng)過(guò)(1,-1),點(diǎn)A的對(duì)應(yīng)點(diǎn)A1

(1-m,2b-1).當(dāng)m時(shí),求平移后拋物線的頂點(diǎn)所能達(dá)到的最高點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1yax24ax5的開口向上.

1)當(dāng)a1時(shí),求拋物線與x軸的交點(diǎn)坐標(biāo);

2)試說(shuō)明拋物線C1一定經(jīng)過(guò)兩個(gè)定點(diǎn),并求出這兩個(gè)定點(diǎn)的坐標(biāo);

3)將拋物線C1沿(2)所求的兩個(gè)定點(diǎn)所在直線翻折,得到拋物線C2,

①寫出拋物線C2的表達(dá)式;

②當(dāng)拋物線C2的頂點(diǎn)到x軸的距離為2,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案