【題目】已知:如圖,□ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動(dòng)點(diǎn)(不與B點(diǎn)重合),作EF⊥AB于F,F(xiàn)E,DC的延長(zhǎng)線(xiàn)交于點(diǎn)G,設(shè)BE=x,△DEF的面積為S.
(1)求證:△BEF∽△CEG;
(2)求用x表示S的函數(shù)表達(dá)式,并寫(xiě)出x的取值范圍;
(3)當(dāng)E點(diǎn)運(yùn)動(dòng)到何處時(shí),S有最大值,最大值為多少?
【答案】(1)見(jiàn)解析;(2)(3)當(dāng)x=3時(shí),S最大值.
【解析】
(1) 由∠BFG=∠G=90°,∠BEF=∠CEG,得△BEF∽△CEG;
(2)設(shè)BE=x,在平行四邊形ABCD中,因?yàn)椤?/span>BAD=120°所以∠B=60°=∠ECG,又BE=x,EC=3-x,所以EF、CG可利用三角函數(shù)求出,即在△EFG中,邊和邊上的高就為已知,從而求出解析式;
(3)由拋物線(xiàn)的開(kāi)口方向和對(duì)稱(chēng)軸可得,當(dāng)0<x≤3時(shí),S隨x的增大而增大,
所以,當(dāng)x=3時(shí),即E與C重合時(shí),取最大值.
(1)證明:∵EF⊥AB,AB∥DC,
∴EF⊥DG.
∴∠BFG=∠G=90°.
又∵∠BEF=∠CEG,
∴△BEF∽△CEG;
(2)解:由(1)得DG為△DEF中EF邊上的高,設(shè)BE=x,
在Rt△BFE中, EF=BEsinB=x.
在Rt△CEG中,CE=3x,GC=(3x)cos60°=,
得DG=DC+GC=,
所以,S=EFDG=x2+x,(其中0<x≤3);
(3)解:∵a=<0,對(duì)稱(chēng)軸x=>3,
∴當(dāng)0<x≤3時(shí),S隨x的增大而增大,
所以,當(dāng)x=3時(shí),即E與C重合時(shí),取最大值S最大值=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx﹣3與直線(xiàn)y=x+3交于點(diǎn)A(m,0)和點(diǎn)B(2,n),與y軸交于點(diǎn)C.
(1)求m,n的值及拋物線(xiàn)的解析式;
(2)在圖1中,把△AOC平移,始終保持點(diǎn)A的對(duì)應(yīng)點(diǎn)P在拋物線(xiàn)上,點(diǎn)C,O的對(duì)應(yīng)點(diǎn)分別為M,N,連接OP,若點(diǎn)M恰好在直線(xiàn)y=x+3上,求線(xiàn)段OP的長(zhǎng)度;
(3)如圖2,在拋物線(xiàn)上是否存在點(diǎn)Q(不與點(diǎn)C重合),使△QAB和△ABC的面積相等?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣(x﹣m)2+4(m>0)的頂點(diǎn)為A,與直線(xiàn)x=相交于點(diǎn)B,點(diǎn)A關(guān)于直線(xiàn)x=的對(duì)稱(chēng)點(diǎn)為C.
(1)若拋物線(xiàn)y=﹣(x﹣m)2+4(m>0)經(jīng)過(guò)原點(diǎn),求m的值.
(2)點(diǎn)C的坐標(biāo)為 .用含m的代數(shù)式表示點(diǎn)B到直線(xiàn)AC的距離為 .
(3)將y=﹣(x﹣m)2+4(m>0,且x≥)的函數(shù)圖象記為圖象G,圖象G關(guān)于直線(xiàn)x=的對(duì)稱(chēng)圖象記為圖象H.圖象G與圖象H組合成的圖象記為圖象M.
①當(dāng)圖象M與x軸恰好有三個(gè)交點(diǎn)時(shí),求m的值.
②當(dāng)△ABC為等腰直角三角形時(shí),直接寫(xiě)出圖象M所對(duì)應(yīng)的函數(shù)值小于0時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角中,,的垂直平分線(xiàn)交于點(diǎn),交于點(diǎn),交于點(diǎn),連接、.
(1)求證:;
(2)求證:四邊形是菱形.
(3)當(dāng)滿(mǎn)足什么條件時(shí),四邊形是正方形,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=-x2+bx+c的頂點(diǎn)為C,對(duì)稱(chēng)軸為直線(xiàn)x=1,且經(jīng)過(guò)點(diǎn)A(3,-1),與y軸交于點(diǎn)B.
(1)求拋物線(xiàn)的解析式;
(2)判斷△ABC的形狀,并說(shuō)明理由;
(3)經(jīng)過(guò)點(diǎn)A的直線(xiàn)交拋物線(xiàn)于點(diǎn)P,交x軸于點(diǎn)Q,若S△OPA=2S△OQA,試求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面內(nèi)容,并解答問(wèn)題:
楊輝和他的一個(gè)數(shù)學(xué)問(wèn)題
我國(guó)古代對(duì)代數(shù)的研究,特別是對(duì)方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.
楊輝,字謙光,錢(qián)塘(今浙江杭州)人,南宋杰出的數(shù)學(xué)家和數(shù)學(xué)教育家,楊輝一生留下了大量的著述,他著名的數(shù)學(xué)書(shū)共五種二十一卷,它們是:《詳解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田(楊輝,南宋數(shù)學(xué)家)畝比類(lèi)乘除捷法》2卷(1275年),《續(xù)古摘奇算法》2卷(1275年,與他人合編),其中后三種為楊輝后期所著,一般稱(chēng)之為《楊輝算法》.下面是楊輝在1275年提出的一個(gè)問(wèn)題(選自楊輝所著《田畝比類(lèi)乘除捷法》):
直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長(zhǎng)一十二步(寬比長(zhǎng)少一十二步),問(wèn)闊及長(zhǎng)各幾步.
請(qǐng)你用學(xué)過(guò)的知識(shí)解決這個(gè)問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)的圖象經(jīng)過(guò)原點(diǎn),開(kāi)口向上,對(duì)稱(chēng)軸為直線(xiàn),對(duì)于下列兩個(gè)結(jié)論:①m為任意實(shí)數(shù),則有;②方程有兩個(gè)不相等的實(shí)數(shù)根,一個(gè)根小于0,另一個(gè)根大于2,說(shuō)法正確的是( )
A.①對(duì),②錯(cuò)B.①錯(cuò),②對(duì)C.①②都對(duì)D.①②都錯(cuò)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點(diǎn)D,交AC邊于點(diǎn)F,作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn);
(2)若△ABC的邊長(zhǎng)為4,求EF的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com