【題目】甘肅省注重建設“書香校園”.為了了解學生們的課外閱讀情況,張老師調(diào)查了全班50名學生在一周內(nèi)的課外閱讀時間,并將統(tǒng)計的時間(單位:小時)分成5組:A.0.5≤x<1;B.1≤x<1.5;C.1.5≤x<2;D.2≤x<2.5;E.2.5≤x<3;并制成兩幅不完整的統(tǒng)計圖表如下:
組別 | 人數(shù) | 占總數(shù)的百分比 |
A | 3 |
|
B |
|
|
C |
| 40% |
D | 9 |
|
E | 1 |
|
總計 | 50 | 100% |
請根據(jù)圖表中提供的信息,解答下列問題:
(1)這次調(diào)查中學生課外閱讀時間的中位數(shù)所在的組是 ;
(2)扇形統(tǒng)計圖中,B組的圓心角為 ,并補全統(tǒng)計圖表;
(3)請根據(jù)以上調(diào)查情況估計:全校1500名學生中有多少名學生每周閱讀時間不低于2小時?
【答案】(1)C組;(2)122.4°,見解析;(3)300
【解析】
(1)先求出B、C組人數(shù),再根據(jù)中位數(shù)的概念求解可得;
(2)根據(jù)以上所求B、C組數(shù)據(jù),利用百分比的概念求解可補全圖表;
(3)用總人數(shù)乘以樣本中D、E組人數(shù)所占比例.
解:(1)C組的人數(shù)為:50×40%=20,
B組的人數(shù)為:50﹣3﹣20﹣9﹣1=17,
因為中位數(shù)是第25、26個數(shù)據(jù)的平均數(shù),而這兩個數(shù)據(jù)都在C組,
所以中位數(shù)在C組,
故答案為:C組.
(2)扇形統(tǒng)計圖中,B組的圓心角為360°×=122.4°,
補全圖表如下:
組別 | 人數(shù) | 占總數(shù)的百分比 |
A | 3 | 6% |
B | 17 | 34% |
C | 20 | 40% |
D | 9 | 18% |
E | 1 | 2% |
總計 | 50 | 100% |
故答案為:122.4°;
(3)1500×=300(名),
答:全校1500名學生中有300名學生每周閱讀時間不低于2小時.
科目:初中數(shù)學 來源: 題型:
【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當將遮陽傘撐開至OD位置時,測得∠ODB=45°,當將遮陽傘撐開至OE位置時,測得∠OEC=30°,且此時遮陽傘邊沿上升的豎直高度BC為20cm,求若當遮陽傘撐開至OE位置時傘下陰涼面積最大,求此時傘下半徑EC的長.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,于點.
(1)如圖所示,點,分別在線段,上,且,當,時,求線段的長;
(2)如圖所示,點,分別在,上,且,求證:;
(3)如圖所示,點在的延長線上,點在上,且,請直接寫出,,三者的等量關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店準備進一批季節(jié)性小家電,每個進價為40元,經(jīng)市場預測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設每個定價增加x元.
(1)寫出售出一個可獲得的利潤是多少元(用含x的代數(shù)式表示)?
(2)商店若準備獲得利潤6000元,并且使進貨量較少,則每個定價為多少元?應進貨多少個?
(3)商店若要獲得最大利潤,則每個應定價多少元?獲得的最大利潤是多少?
【答案】(1)x+10元;(2)每個定價為70元,應進貨200個.(3)每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【解析】試題分析:(1)根據(jù)利潤=銷售價-進價列關系式,(2)總利潤=每個的利潤×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.
試題解析:由題意得:(1)50+x-40=x+10(元),
(2)設每個定價增加x元,
列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進貨量較少,則每個定價為70元,應進貨200個,
(3)設每個定價增加x元,獲得利潤為y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當x=15時,y有最大值為6250,所以每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【題型】解答題
【結束】
24
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關系,并證明你的結論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結論仍然成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖拋物線y=ax2+bx+c的對稱軸為直線x=1,且過點(3,0),下列結論:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正確的有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】長春的冬天經(jīng)常下雪,為了提高清雪的效率,市政府啟用了清雪機,已知一臺清雪機的工作效率相當于一名環(huán)衛(wèi)工人的200倍,若用這臺清雪機清理9000立方米的積雪,要比150名環(huán)衛(wèi)工人清理這些積雪少用2小時,求一臺清雪機每小時清雪多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個著名的希波克拉蒂月牙問題:如圖1,以直角三角形的各邊為直徑分別向上作半圓,則直角三角形的面積可表示成兩個月牙形的面積之和,現(xiàn)將三個半圓紙片沿直角三角形的各邊向下翻折得到圖2,把較小的兩張半圓紙片的重疊部分面積記為S1,大半圓紙片未被覆蓋部分的面積記為S2,則直角三角形的面積可表示成( 。
A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1S2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,AD為弦,∠DBC=∠A.
(1)求證:BC是半圓O的切線;
(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com