【題目】如圖,在平面直角坐標(biāo)系xOy中,Rt△AOB的直角邊OAx軸正半軸上,OBy軸負半軸上,且OA=,OB=1,以點B為頂點的拋物線經(jīng)過點A.

(1)求出該拋物線的解析式.

(2)第二象限內(nèi)的點M,是經(jīng)過原點且平分Rt△AOB面積的直線上一點.若OM=2,請判斷點M是否在(1)中的拋物線上?并說明理由.

(3)P是經(jīng)過點B且與坐標(biāo)軸不平行的直線l上一點.請你探究:當(dāng)直線l繞點B任意旋轉(zhuǎn)(不與坐標(biāo)軸平行或重合)時,是否存在這樣的直線l,在直線l上能找到點P,使△PABRt△AOB相似(相似比不為1)?若存在,求出直線l的解析式;若不存在,說明理由.

【答案】(1)y=x2﹣1(2)點M不在拋物線y=x2﹣1上(3)存在三條直線l:y=﹣x﹣1,y=﹣x﹣1和y=x﹣1,在上述直線l上能找到點P,使Rt△PAB與Rt△AOB相似

【解析】

(1)依題意得到AB的坐標(biāo),根據(jù)B為拋物線的頂點,設(shè)出拋物線的解析式,將A坐標(biāo)代入求出a的值,即可確定出拋物線解析式;
(2)點M不在拋物線上,理由為:設(shè)拋物線與x軸的另一個交點為C,直線OMAB于點D,由題意得到DAB的中點,得到AD=OD=BD,得到MON=∠AOD=∠OAD=30°,作MN垂直于OC,求出MNON的長,確定出M坐標(biāo),代入拋物線解析式檢驗即可得到結(jié)果;
(3)存在,在Rt△AOB中,AO=,BO=1,AB=2,∠ABO=60°,∠BAO=30°,分三種情況考慮:當(dāng)ABP=90°時,若AP1B=60°,則ABP1∽△AOB,由相似得比例,確定出P1的坐標(biāo),再由B坐標(biāo)確定出直線l解析式即可;當(dāng)ABP=60°時,若BAP5=90°,則ABP5∽△OBA,由相似得比例求出P5坐標(biāo),同理確定出直線l解析式;當(dāng)ABP=30°且直線lAB上方時,若P6AB=90°,則ABP6∽△OAB,由相似得比例求出P6坐標(biāo),同理確定出直線l解析式,綜上,得到直線l上能找到點P,使Rt△PABRt△AOB相似時的所有解析式.

(1)依題意得:A(,0),B(0,﹣1),

∵B為拋物線的頂點,

∴設(shè)拋物線解析式為y=ax2﹣1,

將A坐標(biāo)代入得:3a﹣1=0,即a=,

則拋物線解析式為y=x2﹣1;

(2)點M不在拋物線y=x2﹣1上,理由為:

設(shè)拋物線與x軸的另一個交點為C,直線OM交AB于點D,作MN⊥OC于點N,

由題意得:D為AB的中點,即OD=AD=BD,

∴∠MON=∠AOD=∠OAD=30°,

在Rt△OMN中,OM=2,

∴MN=1,ON=,即M(﹣,1),

∵y=×(﹣2﹣1=0≠1,

∴點M不在拋物線y=x2﹣1上;

(3)存在,在Rt△AOB中,AO=,BO=1,AB=2,∠ABO=60°,∠BAO=30°,

分三種情況考慮:

①當(dāng)∠ABP=90°時,若∠AP1B=60°,則△ABP1∽△AOB,

=,即BP1==

∴OP1=,即P1(﹣,0),[這里也利用求出P2(﹣,2)或P3,﹣2)或P4,﹣4)],

設(shè)直線l解析式為y=kx+b,將B與P1坐標(biāo)代入得:

解得:,

此時直線l解析式為y=﹣x﹣1;

②當(dāng)∠ABP=60°時,若∠BAP5=90°,則△ABP5∽△OBA,

=,即BP5==4,

過P5作P5C⊥y軸于點G,在Rt△BGP5中,∠P5BG=60°,

∴P5G=2,BG=2,即P5(2,﹣3),

同理求出直線l解析式為y=﹣x﹣1;

③當(dāng)∠ABP=30°且直線l在AB上方時,若∠P6AB=90°,則△ABP6∽△OAB,

=,即BP6==,

過P6作P6H⊥y軸于點H,在Rt△BP6H中,∠P6BH=30°,

∴P6H=,BH=2,

∴P6,1),

同理得到直線l解析式為y=x﹣1,

綜上,存在三條直線l:y=﹣x﹣1,y=﹣x﹣1和y=x﹣1,在上述直線l上能找到點P,使Rt△PAB與Rt△AOB相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4張正面分別標(biāo)有數(shù)字的不透明卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將卡片上的數(shù)字記為,另有一個被均勻分成4份的轉(zhuǎn)盤,上面分別標(biāo)有數(shù)字,轉(zhuǎn)動轉(zhuǎn)盤,指針?biāo)傅臄?shù)字記為(若指針指在分割線上則重新轉(zhuǎn)一次),則點在拋物線軸所圍成的區(qū)域內(nèi)(不含邊界)的概率是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知P所在平面內(nèi)一點,連接PA,PB,PC,在,中,若存在一個三角形與相似全等除外那么就稱P的共相似點”根據(jù)“共相似點“是否落在三角形的內(nèi)部,邊上或外部,可將其分為內(nèi)共相似點”,“邊共相似點或“外共相似點”.

據(jù)定義可知,等邊三角形______填“存在”或“不存在共相似點

(探究)用邊共相似點探究三角形的形狀

如圖1,若的一個邊共相似點P與其對角項點B的連線,將分割成的兩個三角形恰與原三角形均相似,試判斷的形狀,并說明理由.

(探究2)用內(nèi)共相似點探究三角形的內(nèi)角關(guān)系

如圖2,在中,,高線CD與角平分線BE交于點P,若P的一個內(nèi)共相似點試說明點E的邊共相似點,并直接寫出的度數(shù);

(探究)探究直角三角形共相似點的個數(shù)

如圖3,在中,,,若相以,則滿足條件的P點共有______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程 mx2﹣(m+2)x+2=0.

(1)求證:方程總有實數(shù)根;

(2)若方程有兩個實數(shù)根,且都是整數(shù),求正整數(shù)m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的頂點M在第二象限,且經(jīng)過點 A(1,0)和點 B(0,2).則

(1)a 的取值范圍是________;

(2)△AMO的面積為△ABO面積的倍時,則a的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”,圖中四個直角三角形是全等的,若大正方形ABCD的面積是小正方形EFGH面積的13倍,則的值為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一枚運載火箭從距雷達站C5km的地面O處發(fā)射,當(dāng)火箭到達點A,B時,在雷達站C處測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.求A,B兩點間的距離(結(jié)果精確到0.1km).

(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進一步發(fā)展基礎(chǔ)教育,自2014年以來,某縣加大了教育經(jīng)費的投入,2014年該縣投入教育經(jīng)費6000萬元。2016年投入教育經(jīng)費8640萬元。假設(shè)該縣這兩年投入教育經(jīng)費的年平均增長率相同。

1求這兩年該縣投入教育經(jīng)費的年平均增長率;

2若該縣教育經(jīng)費的投入還將保持相同的年平均增長率,請你預(yù)算2017年該縣投入教育經(jīng)費多少萬元。

查看答案和解析>>

同步練習(xí)冊答案