【題目】如圖1所示,在正方形ABCD和正方形CGEF中,點B、C、G在同一條直線上,M是線段AE的中點,DM的延長線交EF于點N,連接FM,易證:DM=FM,DM⊥FM(無需寫證明過程)

(1)如圖2,當點B、C、F在同一條直線上,DM的延長線交EG于點N,其余條件不變,試探究線段DM與FM有怎樣的關(guān)系?請寫出猜想,并給予證明;

(2)如圖3,當點E、B、C在同一條直線上,DM的延長線交CE的延長線于點N,其余條件不變,探究線段DM與FM有怎樣的關(guān)系?請直接寫出猜想.

【答案】(1)DM⊥FM,DM=FM,證明見解析;

(2)DM⊥FM,DM=FM.

析】

試題分析:(1)連接DF,NF,由四邊形ABCD和CGEF是正方形,得到AD∥BC,BC∥GE,于是得到AD∥GE,求得∠DAM=∠NEM,證得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,證出△DFN是等腰直角三角形,即可得到結(jié)論;

(2)連接DF,NF,由四邊形ABCD是正方形,得到AD∥BC,由點E、B、C在同一條直線上,于是得到AD∥CN,求得∠DAM=∠NEM,證得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,證出△DFN是等腰直角三角形,于是結(jié)論得到.

試題解析:(1)如圖2,DM=FM,DM⊥FM,

證明:連接DF,NF,

∵四邊形ABCD和CGEF是正方形,

∴AD∥BC,BC∥GE,

∴AD∥GE,

∴∠DAM=∠NEM,

∵M是AE的中點,

∴AM=EM,

在△MAD與△MEN中,,∴△MAD≌△MEN,∴DM=MN,AD=EN,

∵AD=CD,∴CD=NE,∵CF=EF,∠DCF=∠DCB=90°,

在△DCF與△NEF中,,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,

∵∠EFN+∠NFC=90°,∴∠DFC+∠CFN=90°,∴∠DFN=90°,

∴DM⊥FM,DM=FM

(2)猜想:DM⊥FM,DM=FM,

證明如下:如圖3,連接DF,NF,連接DF,NF,

∵四邊形ABCD是正方形,∴AD∥BC,∵點E、B、C在同一條直線上,

∴AD∥CN,∴∠ADN=∠MNE,

在△MAD與△MEN中,,

∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∵∠DCF=90°+45°=135°,∠NEF=180°﹣45°=135°,∴∠DCF=∠NEF,

在△DCF與△NEF中,,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,

∵∠CFD+∠EFD=90°,∴∠NFE+∠EFD=90°,∴∠DFN=90°,

∴DM⊥FM,DM=FM.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知a,b,c分別是△ABC的三邊,當m>0時,關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2ax=0有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習了利用尺規(guī)作一個角的平分線后,愛鉆研的小聰發(fā)現(xiàn),只有一把刻度尺也可以作出一個角的平分線.她是這樣作的(如圖)

(1)分別在∠AOB的兩邊OAOB上各取一點C,D,使得OCOD.

(2)連結(jié)CD,并量出CD的長度,取CD的中點E.

(3)O,E兩點作射線OE,則OE就是∠AOB的平分線.

請你說出小聰這樣作的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點.

(1)已知點A(3,1),連接OA,平移線段OA,使點O落在點B.設(shè)點A落在點C,作如下探究:

探究一:若點B的坐標為(1,2),請在圖①中作出平移后的圖形,則點C的坐標是______;連接AC、BO,請判斷O、AC、B四點構(gòu)成的圖形的形狀,并說明理由;

探究二:若點B的坐標為(6,2),如圖②,判斷O、AB、C四點構(gòu)成的圖形的形狀.

(2)通過上面的探究,請直接回答下列問題:

①若已知三點A(a,b)、B(c,d)、C(a+c,b+d)(A、B、C都不與原點O重合),順次連接點O、AC、B,請判斷所得圖形的形狀;

②在①的條件下,如果所得圖形是菱形或者正方形,請選擇一種情況,寫出ab、cd應(yīng)滿足的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種新的運算“*”,并且規(guī)定:a*b=a2-2b.則(-3)*(-1)=_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五邊形從一頂點出發(fā)有________條對角線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長是4,點PAD邊的中點,點E是正方形邊上的一點,若△PBE是等腰三角形,則腰長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個多邊形的內(nèi)角和是外角和的5倍,那么這個多邊形的邊數(shù)是( 。

A. 10B. 11C. 12D. 13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上老師出了一道題計算:1+21+22+23+24+25+26+27+28+29 , 老師在教室巡視了一圈,發(fā)現(xiàn)同學們都做不出來,于是給出答案: 解:令s=1+21+22+23+24+25+26+27+28+29
則2s=2+22+23+24+25+26+27+28+29+210
②﹣①得s=210﹣1
根據(jù)以上方法請計算:
(1)1+2+22+23+…+22015(寫出過程,結(jié)果用冪表示)
(2)1+3+32+33+…+32015=(結(jié)果用冪表示)

查看答案和解析>>

同步練習冊答案