【題目】如圖,在直角梯形中,,點為邊上一點,且,,則的面積為________.
【答案】
【解析】
過點A作AF⊥CD于F,則四邊形ABCF是正方形,延長CB到G,使BG=DF,先證得△AGB≌△ADF,得出AG=AD,∠GAE=∠GAE=45°,然后再證得△ADE≌△AGE,得出EG=ED=5,最后根據全等三角形的面積相等即可求得答案.
過點A作AF⊥CD于F,延長CB到G,使BG=DF,則∠ABG=90°,
∵∠ABC=∠C=∠F=90°,∴四邊形ABCF是矩形,
∵AB=BC,
∴矩形ABCF是正方形,
∴∠BAF=90°,AB=AF,
在△AGB和△ADF中,
,
∴△AGB≌△ADF(SAS),
∴AG=AD,∠GAB=∠DAF,
∴∠GAD=90°,
∵∠EAD=45°,
∴∠GAE=45°,
在△AGE和△ADE中,
,
∴△AGE≌△ADE(SAS),
∴EG=ED=5,
∴S△ADE=S△AGE==15,
故答案為:15.
科目:初中數學 來源: 題型:
【題目】綜合與實踐:
如圖1,已知△ABC為等邊三角形,點D,E分別在邊AB、AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想:在圖1中,線段PM與PN的數量關系是 ,∠MPN的度數是 ;
(2)探究證明:把△ADE繞點A逆時針方向旋轉到圖2的位置,
①判斷△PMN的形狀,并說明理由;
②求∠MPN的度數;
(3)拓展延伸:若△ABC為直角三角形,∠BAC=90°,AB=AC=10,點DE分別在邊AB,AC上,AD=AE=4,連接DC,點M,P,N分別為DE,DC,BC的中點.把△ADE繞點A在平面內自由旋轉,如圖3,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,每個小方格的邊長都為1,△各頂點都在格點上.若點的坐標為(0,3),請按要求解答下列問題:
(1)在圖中建立符合條件的平面直角坐標系;
(2)根據所建立的坐標系,寫出點和點的坐標;
(3)畫出△關于軸的對稱圖形△.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數圖像如圖所示,根據圖像所提供的信息解答下列問題:
(1)t= min.
(2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,
①則甲登山的的上升速度是 m/min;
②請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數關系式.
③當甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)連接AQ、CP,若AQ⊥CP,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,大樓(可以看作不透明的長方體)的四周都是空曠的水平地面.地面上有甲、乙兩人,他們現(xiàn)在分別位于點和點處,、均在的中垂線上,且、到大樓的距離分別為米和米,又已知長米,長米,由于大樓遮擋著,所以乙不能看到甲.若乙沿著大樓的外面地帶行走,直到看到甲(甲保持不動),則他行走的最短距離長為________米.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com