【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)連接AQ、CP,若AQ⊥CP,求t的值.
【答案】(1)當(dāng)t=1或t=時,△BPQ與△ABC相似;(2)t=.
【解析】
試題(1)分兩種情況:①當(dāng)△BPQ∽△BAC時,BP:BA=BQ:BC;當(dāng)△BPQ∽△BCA時,BP:BC=BQ:BA,再根據(jù)BP=5t,QC=4t,AB=10cm,BC=8cm,代入計算即可;
(2)過P作PM⊥BC于點M,AQ,CP交于點N,則有PB=5t,PM=3t,MC=8-4t,根據(jù)△ACQ∽△CMP,得出AC:CM=CQ:MP,代入計算即可.
試題解析:根據(jù)勾股定理得:BA==10;
(1)分兩種情況討論:
①當(dāng)△BPQ∽△BAC時,
∵BP=5t,QC=4t,AB=10,BC=8,
∴,解得,t=1,
②當(dāng)△BPQ∽△BCA時,
∴,解得,t=;
∴t=1或時,△BPQ∽△BCA;
(2)過P作PM⊥BC于點M,AQ,CP交于點N,如圖所示:
則PB=5t,PM=3t,MC=8-4t,
∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,
∴∠NAC=∠PCM,
∵∠ACQ=∠PMC,
∴△ACQ∽△CMP,
∴
∴,解得t=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD=4,AD=6,CD=8.
(1)求證:∠ACB=∠ABC;
(2)如圖2,E為AC的中點,連結(jié)DE.動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達終點時另一個點也停止運動.設(shè)點M運動的時間為t(秒),
①若MN與BC平行,求t的值;
②問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當(dāng)△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)連接DE,交AF與O點,試探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠BAD+∠BCD=180°, AC平分∠BAD,過點C作CE⊥AD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長是____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(b,0),C(-1,2),且+(a+2b-4)2=0.
(1)求a,b的值.
(2)在y軸的正半軸上存在一點M,使S△COM=S△ABC,求出點M的坐標(biāo).
(3)在坐標(biāo)軸的其他位置是否有在點M,使S△COM=S△ABC仍成立?若存在,請直 接寫出符合條件的點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠ABC,射線BC上一點D.
(1)求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內(nèi)部,且點P到∠ABC兩邊的距離相等.
(2)在(1)的條件下,若DP⊥AB,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(k≠0)經(jīng)過ABCD的頂點B、D,點A的坐標(biāo)為(0,﹣1),AB∥x軸,CD經(jīng)過點(0,2),ABCD的面積是18,則點D的坐標(biāo)是( 。
A. (﹣2,2) B. (3,2) C. (﹣3,2) D. (﹣6,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com