【題目】小明和小亮進(jìn)行100米賽跑,兩人在同一起跑線上,結(jié)果第一次比賽時小明勝10米;在進(jìn)行第二次比賽時,小明的起跑線比原來起跑線推后10米,如果兩次他們速度不變,則第二次結(jié)果( )勝.
A.小亮勝B.小明勝C.同時到達(dá)D.不能確定
【答案】B
【解析】
設(shè)小明的百米成績?yōu)?/span>t,知道小明每次都比小亮提前10m到達(dá)終點,則小明在時間t內(nèi)跑100m、小亮跑90m,可求出二人的速度;若讓小明將起點向后遠(yuǎn)離原起點10m,小亮仍在原起點處與小明同時起跑,因速度不變,可分別求出二人所用時間,然后即可得出答案.
設(shè)小明用的時間為t,則速度為v1=,
小亮的速度v2=,
第2次比賽時,s1′=100m+10m=110m,s2′=100m,
因為速度不變,所以小明用的時間:t1′=,
小亮用的時間:t2′=,
因為<t,即t1′<t2′,因此還是小明先到達(dá)終點,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2018春季環(huán)境整治活動中,某社區(qū)計劃對面積為1600m2的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個工程隊來完成,若甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用5天.
(1)求甲、乙兩工程隊每天能完成綠化的面積;
(2)設(shè)甲工程隊施工x天,乙工程隊施工y天,剛好完成綠化任務(wù),求y關(guān)于x的函數(shù)關(guān)系式;
(3)若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數(shù)不超過25天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,連接BD,點O是BD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( 。
A. 2對 B. 3對 C. 4對 D. 5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標(biāo)有數(shù)字,,,,如圖,正方形頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.如:若從圖起跳,第一次擲得,就順時針連續(xù)跳個邊長,落到圈;若第二次擲得,就從開始順時針連續(xù)跳個邊長,落到圈;設(shè)游戲者從圈起跳.
()嘉嘉隨機擲一次骰子,求落回到圈的概率.
()淇淇隨機擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:求若干個相同的有理數(shù)(均不等于 0)的除法運算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作:“(﹣3)的圈 4 次方”.一般地,把個記作 a,讀作 “a 的圈 n次方”
(初步探究)
(1)直接寫出計算結(jié)果:2③,(﹣)③.
(深入思考)
2③
我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?
(2)試一試,仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.5⑥;(﹣)⑩.
(3)猜想:有理數(shù) a(a≠0)的圈n(n≥3)次方寫成冪的形式等于多少.
(4)應(yīng)用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的點,∠1=∠2.
求證:(1)BE=DF;(2)AF∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分.已知拋物線的對稱軸為x=2,與x軸的一個交點是(﹣1,0).有下列結(jié)論:
①abc>0;②4a﹣2b+c<0;③4a+b=0;④拋物線與x軸的另一個交點是(5,0);⑤點(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2.
其中正確的是( )
A.①②③ B.②④⑤ C.①③④ D.③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(1,0)和(0,2).
(1)當(dāng)﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com