【題目】為了適合不同人群的口味,某商店對蘋果味、草莓味、牛奶味的糖果混合組裝成甲、乙兩種袋裝進行銷售.甲種每袋裝有蘋果味、草莓味、牛奶味的糖果各10顆,乙種每袋裝有蘋果味糖果20顆,草莓味和牛奶味糖果各5.甲、乙兩種袋裝糖果每袋成本價分別是袋中各類糖果成本之和.已知每顆蘋果味的糖果成本價為0.4元,甲種袋裝糖果的售價為23.4元,利潤率為30%,乙種袋裝糖果每袋的利潤率為20%.若這兩種袋裝的銷售利潤率達到24%,則該公司銷售甲、乙兩種袋裝糖果的數(shù)量之比是__________.

【答案】5:9

【解析】

根據(jù)題意,先求出1顆草莓味和1顆牛奶味糖果的成本之和,然后求出乙種糖果的成本價,然后設(shè)甲種糖果x袋,乙種糖果y袋,通過利潤的關(guān)系,列出方程,解方程,即可求出甲、乙兩種糖果數(shù)量之比.

解:設(shè)1顆草莓味糖果m元,1顆牛奶味糖果n元,則,

,

解得:,

∴甲種糖果的成本價:

∴乙種糖果的成本價:元,

設(shè)甲種糖果有x袋,乙種糖果有y袋,則,

解得:;

∴該公司銷售甲、乙兩種袋裝糖果的數(shù)量之比是.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小芳家的落地窗(線段DE)與公路(直線PQ)互相平行,她每天做完作業(yè)后都會在點A處向窗外的公路望去.

1)請在圖中畫出小芳能看到的那段公路并記為BC

2)小芳很想知道點A與公路之間的距離,于是她想到了一個辦法.她測出了鄰家小彬在公路BC段上走過的時間為10秒,又測量了點A到窗的距離是4米,且窗DE的長為3米,若小彬步行的平均速度為1.2/秒,請你幫助小芳計算出點A到公路的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關(guān)于的一元二次方程是整數(shù)).

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的兩個實數(shù)根分別為,(其中),設(shè),則是否為變量的函數(shù)?如果是,求出函數(shù)的解析式;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解九年級學生的體育達標情況,隨機抽取名九年級學生進行體育達標項目測試,測試成績?nèi)缦卤,請根?jù)表中的信息,解答下列問題:

測試成績(分)

人數(shù)(人)

1)該校九年級有名學生,估計體育測試成績?yōu)?/span>分的學生人數(shù);

2)該校體育老師要對本次抽測成績?yōu)?/span>分的甲、乙、丙、丁名學生進行分組強化訓練,要求兩人一組,求甲和乙恰好分在同一組的概率.(用列表或樹狀圖方法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,平行四邊形ABCD中,以B為坐標原點建立如圖所示直角坐標系,ABAC,AB=3,AD=5,點P在邊AD上運動(點P不與A重合,但可以與D點重合),以P為圓心,PA為半徑的⊙P與對角線AC交于AE兩點.

1 直接寫出點A的坐標(____,____)設(shè)APx,直接寫出P點坐標(_______,______)(用含x的代數(shù)式表示)

2)當⊙P與邊CD相切于點F時,求P點的坐標;

3)隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點的個數(shù)也在變化,直接寫出公共點的個數(shù)與相對應(yīng)的AP的取值之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中(BC>AB),過AAFBC,垂足為F,過CCHAB,垂足為H,交AFG,點EFC上一點,且GEED

1)若FC=2BF=4,AB=,求平行四邊形ABCD的面積.

2 AF=FC,FBE中點,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年北疆承辦了世界園藝博覽會,某商店為了抓住博覽會的商機,決定購買A.B兩種世園會紀念品,若購進A中紀念品20件,B種紀念品10件,需要2000元;若購進A中紀念品8件,B種紀念品6件,需要1100元.

(1)求購進A.B兩種紀念品每件各需要多少元?

(2)若該商店決定拿出10000元全部用來購進這兩種紀念品,考慮到市場需求,要求購進A種紀念品的數(shù)量不少于B種的6倍,且少于B種紀念品數(shù)量的8倍,設(shè)購進B種紀念品a件,則該商店共有幾種進貨方案?

(3)在第(2)問的條件下,若銷售每件A種紀念品可獲利潤30元,每件B種紀念品可獲利潤40元,設(shè)總利潤為y元,請寫出總利潤y(元)與a(個)的函數(shù)關(guān)系式,并根據(jù)函數(shù)關(guān)系式說明總利潤最高時的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學活動課中,某數(shù)學小組探究求環(huán)形花壇(如圖所示)面積的方法,現(xiàn)有以下工具;①卷尺;②直棒EF;T型尺(CD所在的直線垂直平分線段AB).

(1)在圖1中,請你畫出用T形尺找大圓圓心的示意圖(保留畫圖痕跡,不寫畫法);

(2)如圖2,小華說:我只用一根直棒和一個卷尺就可以求出環(huán)形花壇的面積,具體做法如下:

將直棒放置到與小圓相切,用卷尺量出此時直棒與大圓兩交點M,N之間的距離,就可求出環(huán)形花壇的面積如果測得MN=10m,請你求出這個環(huán)形花壇的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BE,CD分別是邊AC、AB上的中線,BECD相交于點O,BE6,則OE_____

查看答案和解析>>

同步練習冊答案