【題目】如圖,等邊三角形的頂點A1,1)、B31),規(guī)定把等邊△ABC先沿x軸翻折,再向左平移1個單位為一次變換,如果這樣連續(xù)經(jīng)過2018次變換后,等邊△ABC的頂點C的坐標為_____

【答案】(﹣2016 +1

【解析】

據(jù)軸對稱判斷出點C變換后在x軸上方,然后求出點C縱坐標,再根據(jù)平移的距離求出點A變換后的橫坐標,最后寫出即可.

解:∵△ABC是等邊三角形AB312,

∴點Cx軸的距離為1+2×+1

橫坐標為2,

C2 +1),

2018次變換后的三角形在x軸上方,

C的縱坐標為+1,

橫坐標為22018×1=﹣2016,

所以,點C的對應點C的坐標是(﹣2016+1

故答案為:(﹣2016,+1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雜技團演員在圓柱形場地表演蕩秋千節(jié)目,小丑甲在 A 處坐上秋千,小丑乙在離秋千5m B 處保護(即 BD=5 m).

1)當甲蕩至乙處時,乙發(fā)現(xiàn)甲升高了1 m ,于是他就算出了秋千繩索的長度,你知道他是怎么算的嗎?請你試一試.

2)為了保證表演的安全性,要求秋千最大幅度的張角不能超過45°(張角指的是秋千繩索和鉛垂方向的夾角),在(1)小題繩索長度不變的情況下,那么圓柱形場地的底面直徑至少應該是多少m?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一圓弧過方格的格點A,B,C,在方格中建立平面直角坐標系,使點A的坐標為(-2,4).

(1) 用直尺畫出該圓弧所在圓的圓心M的位置,并寫出點M的坐標;

(2)判斷點D與⊙M的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是一個長為2m,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖2的方式拼成一個正方形

如圖中的陰影部分的正方形的邊長等于______用含m、n的代數(shù)式表示;

請用兩種不同的方法列代數(shù)式表示圖中陰影部分的面積:

方法______;

方法______

觀察圖,試寫出、mn這三個代數(shù)式之間的等量關系:______;

根據(jù)題中的等量關系,若,,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四個結論①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正確的是(   )

A. ①②③④ B. ①② C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,A(-2,1),B(-4,-2),C(-1-3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對應點C′的坐標為(4,1)

(1)A′、B′兩點的坐標分別為A′______B′______

(2)作出△ABC平移之后的圖形△A′B′C′;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

(1)求y關于x的函數(shù)關系式;

(2)該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?

(3)實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】暑假期間,小明和父母一起開車到距家200千米的景點旅游.出發(fā)前,汽車油箱內(nèi)儲油45升;當行駛150千米時,發(fā)現(xiàn)油箱剩余油量為30.

(1)已知油箱內(nèi)余油量y()是行駛路程x(千米)的一次函數(shù),求yx的函數(shù)關系式;

(2)當油箱中余油量少于3升時,汽車將自動報警.如果往返途中不加油,他們能否在汽車報警前回到家?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB邊上一點,FAD延長線上一點,BE=DF.

(1)求證:CE=CF;

(2)若點GAD邊上,且∠GCE=45°,BE=3,DG=5,求GE的長.

查看答案和解析>>

同步練習冊答案