【題目】如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長(zhǎng)為_____.
【答案】5
【解析】
作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長(zhǎng),根據(jù)三角形面積表示DH的長(zhǎng),證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長(zhǎng),根據(jù)三角形面積表示DH的長(zhǎng),證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.
過(guò)D作DH⊥BC于H,過(guò)A作AM⊥BC于M,過(guò)D作DG⊥AM于G,
設(shè)CM=a,
∵AB=AC,
∴BC=2CM=2a,
∵tan∠ACB=2,
∴=2,
∴AM=2a,
由勾股定理得:AC=a,
S△BDC=BCDH=10,
2aDH=10,
DH=,
∵∠DHM=∠HMG=∠MGD=90°,
∴四邊形DHMG為矩形,
∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
∵∠ADC=90°=∠ADG+∠CDG,
∴∠ADG=∠CDH,
在△ADG和△CDH中,
∵,
∴△ADG≌△CDH(AAS),
∴DG=DH=MG=,AG=CH=a+,
∴AM=AG+MG,
即2a=a++,
a2=20,
在Rt△ADC中,AD2+CD2=AC2,
∵AD=CD,
∴2AD2=5a2=100,
∴AD=5或5(舍),
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A在x軸上,且A(4,0),點(diǎn)B在y軸上,且B(0,4).
(1)求線段AB的長(zhǎng);
(2)若點(diǎn)E在線段AB上,OE⊥OF,且OE=OF,求AE+AF的值;
(3)在(2)的條件下,過(guò)O作OM⊥EF,交AB于M,試確定線段BE、EM、AM之間的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在菱形中,點(diǎn),,分別為,,的中點(diǎn),連接,,,.
求證:;
當(dāng)與滿足什么關(guān)系時(shí),四邊形是正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年?yáng)|營(yíng)市教育局在全市中小學(xué)開(kāi)展了“情系疏勒書(shū)香援疆”捐書(shū)活動(dòng),200多所學(xué)校的師生踴躍參與,向新疆疏勒縣中小學(xué)共捐贈(zèng)愛(ài)心圖書(shū)28.5萬(wàn)余本.某學(xué)校學(xué)生社團(tuán)對(duì)本校九年級(jí)學(xué)生所捐圖書(shū)進(jìn)行統(tǒng)計(jì),根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計(jì)圖表.請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中所提供的信息解答下列問(wèn)題:
圖書(shū)種類 | 頻數(shù)(本) | 頻率 |
名人傳記 | 175 | a |
科普?qǐng)D書(shū) | b | 0.30 |
小說(shuō) | 110 | c |
其他 | 65 | d |
(1)求該校九年級(jí)共捐書(shū)多少本;
(2)統(tǒng)計(jì)表中的a= ,b= ,c= ,d= ;
(3)若該校共捐書(shū)1500本,請(qǐng)估計(jì)“科普?qǐng)D書(shū)”和“小說(shuō)”一共多少本;
(4)該社團(tuán)3名成員各捐書(shū)1本,分別是1本“名人傳記”,1本“科普?qǐng)D書(shū)”,1本“小說(shuō)”,要從這3人中任選2人為受贈(zèng)者寫(xiě)一份自己所捐圖書(shū)的簡(jiǎn)介,請(qǐng)用列表法或樹(shù)狀圖求選出的2人恰好1人捐“名人傳記”,1人捐“科普?qǐng)D書(shū)”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四個(gè)均由十六個(gè)小正方形組成的正方形網(wǎng)格中,各有一個(gè)三角形ABC,那么這四個(gè)三角形中,不是直角三角形的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫(huà)出以AB為斜邊的等腰直角三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上;
(2)在方格紙中畫(huà)出以CD為對(duì)角線的矩形CMDN(頂點(diǎn)字母按逆時(shí)針順序),且面積為10,點(diǎn)M、N均在小正方形的頂點(diǎn)上;
(3)連接ME,并直接寫(xiě)出EM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,直角邊為a、b,斜邊為c.若把關(guān)于x的方程ax2+cx+b=0稱為“勾系一元二次方程”,則這類“勾系一元二次方程”的根的情況是( 。
A. 有兩個(gè)不相等的實(shí)數(shù)根 B. 有兩個(gè)相等的實(shí)數(shù)根
C. 沒(méi)有實(shí)數(shù)根 D. 一定有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),點(diǎn)在直線上,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸交直線點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
(1)的值為 ;
(2)用含有的式子表示線段的長(zhǎng);
(3)若的面積為,求與之間的函數(shù)表達(dá)式,并求出當(dāng)最大時(shí)點(diǎn)的坐標(biāo);
(4)在(3)的條件下,把直線沿著軸向下平移,交軸于點(diǎn),交線段于點(diǎn),若點(diǎn)的坐標(biāo)為,在平移的過(guò)程中,當(dāng)時(shí),請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com