精英家教網 > 初中數學 > 題目詳情

如圖,拋物線與x軸交于A(1,0),B(-3,0)兩點,與y軸交于點C(0,3).
(1)求此拋物線的解析式;
(2)在x軸上找一點D,使得以點A、C、D為頂點的三角形是直角三角形,求點D的坐標.

解;(1)設拋物線的解析式為y=a(x-1)(x+3),由題意,得
3=-3a,
∴a=-1,
∴拋物線的解析式為:y=-(x-1)(x+3),即y=-x2+2x+3.

(2)∵點D在x軸上,
∴在Rt△ACD中,∠CAD不可能為直角.
當∠ADC=90°時,D點與O點重合,
∴D(0,0),
當∠ACD′=90°時,
∴∠D′CO+∠ACO=90°.
∵∠ACO+∠OAC=90°,
∴∠D′CO=∠OAC,
∴△D′CO∽△CAO,
,

∴D′O=9,
∴D′(-9,0).
綜上所述,D點的坐標為:(0,0)或(-9,0)

分析:(1)由條件拋物線經過A(1,0),B(-3,0)和C(0,3).由待定系數法就可以直接求出拋物線的解析式.
(2)由條件可以知道∠CAD不可能為直角,從∠ADC和∠ACD′是直角來討論可以求出點D的坐標.
點評:本題考查了待定系數法求拋物線的解析式,直角三角形的性質,相似三角形的判定及性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3),設拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標;
(2)以B、C、D為頂點的三角形是直角三角形嗎?為什么?
(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請指出符合條件的點P的位置,并直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點,且x1<x2,與y軸交于點C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個根.
(1)求拋物線的解析式;
(2)點M是線段AB上的一個動點,過點M作MN∥BC,交AC于點N,連接CM,當△CMN的面積最大時,求點M的坐標;
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點,與y軸交于C(0,3),M是拋物線對稱軸上的任意一點,則△AMC的周長最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,拋物線與y軸交于點A(0,4),與x軸交于B、C兩點.其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點D,使△BCD為直角三角形.若存在,求所有D點坐標;反之說理;
(3)點P為x軸上方的拋物線上的一個動點(A點除外),連PA、PC,若設△PAC的面積為S,P點橫坐標為t,則S在何范圍內時,相應的點P有且只有1個.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點,且對稱軸為直線x=2,與y軸交于點C(0,-4).
(1)求拋物線的解析式;
(2)點M是拋物線對稱軸上的一個動點,連接MA、MC,當△MAC的周長最小時,求點M的坐標;
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點F的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案