【題目】如圖,已知雙曲線經過點,點是雙曲線第三象限分支上的動點,過點作軸,過點作軸,垂足分別為,,連接,.
求的值;
若的面積為,
①若直線的解析式為,求、的值;
②根據(jù)圖象,直接寫出時的取值范圍;
③判斷直線與的位置關系,并說明理由.
【答案】;①;②由圖象知當或時,;③,理由見解析.
【解析】
(1)把點D的坐標代入雙曲線解析式,進行計算即可得解;
(2)①先根據(jù)點D的坐標求出BD的長度,再根據(jù)三角形的面積公式求出點C到BD的距離,然后求出點C的縱坐標,再代入反比例函數(shù)解析式求出點C的坐標,然后利用待定系數(shù)法求一次函數(shù)解析式解答;
②根據(jù)圖象即可得到y1>y2時x的取值范圍;
③根據(jù)題意求出點A、B的坐標,然后利用待定系數(shù)由法求出直線AB的解析式,可知與直線CD的解析式k值相等,所以AB、CD平行.
∵雙曲線經過點,
∴,
解得;
①設點到的距離為,
∵點的坐標為,軸,
∴,
∴,
解得,
∵點是雙曲線第三象限上的動點,點的縱坐標為,
∴點的縱坐標為,
∴,
解得,
∴點的坐標為,
則,
解得;
②由圖象知當或時,,
③.
理由如下:∵軸,軸,設點的坐標為,點的坐標為,
∴點、的坐標分別為,,
設直線的解析式為,
則,
解得,
所以,直線的解析式為,
設直線的解析式為,
則,
解得,
∴直線的解析式為,
∵、的解析式都等于,
∴與的位置關系是.
科目:初中數(shù)學 來源: 題型:
【題目】將一個橫截面是正方形的長方體平均截成段后,每段長分米,這樣表面積就增加了平方分米,原來長方體的表面積是________平方分米,體積是________立方分米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家電銷售商場電冰箱的銷售價為每臺1600元,空調的銷售價為每臺1400元,每臺電冰箱的進價比每臺空調的進價多300元,商場用9000元購進電冰箱的數(shù)量與用7200元購進空調數(shù)量相等.
(1)求每臺電冰箱與空調的進價分別是多少?
(2)現(xiàn)在商場準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進空調數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?
(3)實際進貨時,廠家對電冰箱出廠價下調K(0<K<150)元,若商場保持這兩種家電的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺家電銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.
(1)請判斷四邊形AEA′F的形狀,并說明理由;
(2)當四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C/.
(1)求拋物線C的函數(shù)表達式;
(2)若拋物線C/與拋物線C在y軸的右側有兩個不同的公共點,求m的取值范圍.
(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C/上的對應點P/,設M是C上的動點,N是C/上的動點,試探究四邊形PMP/N能否成為正方形?若能,請直接寫出m的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大樓(可以看作不透明的長方體)的四周都是空曠的水平地面.地面上有甲、乙兩人,他們現(xiàn)在分別位于點和點處,、均在的中垂線上,且、到大樓的距離分別為米和米,又已知長米,長米,由于大樓遮擋著,所以乙不能看到甲.若乙沿著大樓的外面地帶行走,直到看到甲(甲保持不動),則他行走的最短距離長為________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次調查的市民人數(shù)為________人,m=________,n=________;
(2)補全條形統(tǒng)計圖;
(3)若該市約有市民100000人,請你根據(jù)抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把半徑為的圓周按分割為三段.則最短的弧所對的圓心角為________,該弧和半徑圍成的扇形的面積為________,最長的弧所對的圓周角為________,最長的弧長是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),頂點坐標是(1,n),與y軸的交點在(0,3)和(0,6)之間(包含端點),則下列結論錯誤的是( )
A.3a+b<0B.﹣2≤a≤﹣lC.abc>0D.9a+3b+2c>0
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com