【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(2,0),點D的坐標為(0,4).延長CB交x軸于點A1,作正方形A1B1C1C;延長C1B1交x軸于點A2,作正方形A2B2C2C1…按這樣的規(guī)律進行下去,第2018個正方形的面積為( 。
A. B. C. D.
【答案】C
【解析】分析: 先求出正方形ABCD的邊長和面積,再求出第一個正方形A1B1C1C的面積,得出規(guī)律,根據規(guī)律即可求出第2018個正方形的面積.
詳解: ∵點A的坐標為(2,0),點D的坐標為(0,4),
∴OA=2,OD=4,
∵∠AOD=90°,
∴AB=AD=2,∠ODA+∠OAD=90°,
∵四邊形ABCD是正方形,
∴∠BAD=∠ABC=90°,S正方形ABCD=(2)2=20,
∴∠ABA1=90°,∠OAD+∠BAA1=90°,
∴∠ODA=∠BAA1,
∴△ABA1∽△DOA,
∴=,即 =,
∴BA1=,
∴CA1=,
∴正方形A1B1C1C的面積=()2=20×,…,
故正方形A2018B2018C2018C2017的面積為:20×()2018=20·.
故選:C.
點睛: 本題考查了正方形的性質以及坐標與圖形性質;通過求出正方形ABCD和正方形A1B1C1C的面積得出規(guī)律是解決問題的關鍵.
科目:初中數學 來源: 題型:
【題目】某商場銷售一批電視機,一月份每臺毛利潤是售出價的20%(毛利潤=售出價-買入價),二月份該商場將每臺售出價調低10%(買入價不變),結果銷售臺數比一月份增加120%,那么二月份的毛利潤總額與一月份毛利潤總額的比是__________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正比例函數y=2x與反比例函數y=(k>0)的圖象交于A、B兩點,且點A的橫坐標為4,
(1)求k的值;
(2)根據圖象直接寫出正比例函數值小于反比例函數值時x的取值范圍;
(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標.
【答案】(1) k=32 (2) x<﹣8或0<x<8 (3) P(﹣7+3 ,16+);或P(7+3,﹣16+)
【解析】分析:(1)先將x=4代入正比例函數y=2x,可得出y=8,求得點A(4,8),再根據點A與B關于原點對稱,得出B點坐標,即可得出k的值;
(2)正比例函數的值小于反比例函數的值即正比例函數的圖象在反比例函數的圖象下方,根據圖形可知在交點的右邊正比例函數的值小于反比例函數的值.
(3)由于雙曲線是關于原點的中心對稱圖形,因此以A、B、P、Q為頂點的四邊形應該是平行四邊形,那么△POA的面積就應該是四邊形面積的四分之一即56.可根據雙曲線的解析式設出P點的坐標,然后表示出△POA的面積,由于△POA的面積為56,由此可得出關于P點橫坐標的方程,即可求出P點的坐標.
詳解:(1)∵點A在正比例函數y=2x上,
∴把x=4代入正比例函數y=2x,
解得y=8,∴點A(4,8),
把點A(4,8)代入反比例函數y=,得k=32,
(2)∵點A與B關于原點對稱,
∴B點坐標為(﹣4,﹣8),
由交點坐標,根據圖象直接寫出正比例函數值小于反比例函數值時x的取值范圍,x<﹣8或0<x<8;
(3)∵反比例函數圖象是關于原點O的中心對稱圖形,
∴OP=OQ,OA=OB,
∴四邊形APBQ是平行四邊形,
∴S△POA=S平行四邊形APBQ×=×224=56,
設點P的橫坐標為m(m>0且m≠4),
得P(m, ),
過點P、A分別做x軸的垂線,垂足為E、F,
∵點P、A在雙曲線上,
∴S△POE=S△AOF=16,
若0<m<4,如圖,
∵S△POE+S梯形PEFA=S△POA+S△AOF,
∴S梯形PEFA=S△POA=56.
∴(8+)(4﹣m)=56.
∴m1=﹣7+3,m2=﹣7﹣3(舍去),
∴P(﹣7+3,16+);
若m>4,如圖,
∵S△AOF+S梯形AFEP=S△AOP+S△POE,
∴S梯形PEFA=S△POA=56.
∴×(8+)(m﹣4)=56,
解得m1=7+3,m2=7﹣3(舍去),
∴P(7+3,﹣16+).
∴點P的坐標是P(﹣7+3,16+);或P(7+3,﹣16+).
點睛:本題考查了待定系數法求反比例函數與一次函數的解析式和反比例函數y=中k的幾何意義.這里體現了數形結合的思想,做此類題一定要正確理解k的幾何意義.利用數形結合的思想,求得三角形的面積.
【題型】解答題
【結束】
23
【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC=AD=9,∠ABC=70°,點E,F分別在線段AD,DC上(點E與點A,D不重合),且∠BEF=110°.
(1)求證:△ABE∽△DEF.
(2)當點E為AD中點時,求DF的長;
(3)在線段AD上是否存在一點E,使得F點為CD的中點?若存在,求出AE的長度;若不存在,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】古希臘畢達哥拉斯學派的數學家經常用小石子擺成各種形狀來研究數學問題.
如圖1,由于這些三角形是由1個,3個,6個,10個,… 小石子擺成的,所以他們稱1,3,6,10,…,這些數為三邊形數;類似的,如圖2,他們稱1,4,9,16,…,這樣的數為四邊形數.
(1)既是三邊形數,又是四邊形數,且大于1的最小正整數是 ;
(2)如果記第n個k邊形小石子的個數為(k≥3),那么易得,,.
① ; ;
② ; ;
③ 如果,那么 ;
(3)如果進一步研究發(fā)現,,…,那么 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=AC,BE⊥AC于點E,CF⊥AB于點F,BE,CF交于點D,則下列結論中不正確的是( )
A. △ABE≌△ACF B. 點D在∠BAC的平分線上
C. △BDF≌△CDE D. D是BE的中點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,FA⊥AE,交CB延長線于點F,則EF的長為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,且AB=BC.AD是⊙O的直徑,AC、BD交于點E,P為DB延長線上一點,且PB=BE.
(1)求證:△ABE∽△DBA;
(2)試判斷PA與⊙O的位置關系,并說明理由;
(3)若E為BD的中點,求tan∠ADC的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市電力部門對居民用電按月收費,標準如下:①用電不超過度的,每度收費元;②用電超過度的,超過部分每度收費元.請根據上述收費標準解答下列問題:
(1)小明家月份用電度,應交電費______________元;
(2)小明家月交電費元,則他家月份用電多少度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊AD、CD上的點,且AE=DF,AF、BE相交于點P,設AB=,AE= ,則下列結論:①△ABE≌△DAF;②AF⊥BE;③;④若,連接BF,則tan∠EBF=.其中正確的結論是______.(填寫所有正確結論的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com