【題目】如圖,已知矩形ABCD 中,E、F 分別為BC、AD 上的點,將四邊形ABEF 沿直線EF 折疊后,點B 落在CD 邊上的點G 處,點A 的對應(yīng)點為點H.再將折疊后的圖形展開,連接BF、GF、BG,若BF⊥GF.
(1)求證:△ABF≌△DFG;
(2)已知AB=3,AD=5,求tan∠CBG 的值.
【答案】
(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠D=90°,
∴∠AFB+∠ABF=90°,
∵BF⊥GF,
∴∠AFB+∠DFG=90°,
∴∠ABF=∠DFG,
由折疊知BF=GF,
在△ABF和△DFG中,
,
∴△ABF≌△DFG(AAS);
(2)解:由(1)得DF=AB=3,DG=AF,
∴DG=AF=AD﹣DF=5﹣3=2,
∵四邊形ABCD是矩形,
∴CD=AB=3,BC=AD=5,∠C=90°,
∴CG=CD﹣DG=3﹣2=1,
∴tan∠CBG= .
【解析】(1)根據(jù)∠AFB+∠ABF=90°,∠AFB+∠DFG=90°,即可得到∠ABF=∠DFG,由折疊知BF=GF,根據(jù)AAS即可判定△ABF≌△DFG;(2)根據(jù)全等三角形的性質(zhì)可得DF=AB=3,DG=AF,求得DG再根據(jù),四邊形ABCD是矩形,求得CG,即可得出tan∠CBG 的值.
【考點精析】通過靈活運用矩形的性質(zhì)和翻折變換(折疊問題),掌握矩形的四個角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結(jié)論:
①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.
其中正確的結(jié)論的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B也在拋物線L1上(點A與點B不重合),我們定義:這樣的兩條拋物L(fēng)1 , L2互為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有多條.
(1)如圖2,已知拋物線L3:y=2x2﹣8x+4與y軸交于點C,試求出點C關(guān)于該拋物線對稱軸對稱的點D的坐標;
(2)請求出以點D為頂點的L3的友好拋物線L4的解析式,并指出L3與L4中y同時隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1 (x﹣m)2+n的任意一條友好拋物線的解析式為y=a2 (x﹣h)2+k,請寫出a1與a2的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AE與BF交于點G.下列結(jié)論錯誤的是( 。
A. AE=BF B. ∠DAE=∠BFC
C. ∠AEB+∠BFC=90° D. AE⊥BF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線與BC的延長線交于點E,與DC交于點F.
(1)求證:CD=BE;
(2)若AB=4,點F為DC的中點,DG⊥AE,垂足為G,且DG=1,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知二次函數(shù)y=x2+bx+c的圖象與x 軸交于A(﹣1,0)、B(3,0)兩點,與y 軸交于點C,頂點為D,對稱軸為直線l.
(1)求該二次函數(shù)的表達式;
(2)若點E 是對稱軸l 右側(cè)拋物線上一點,且S△ADE=2S△AOC , 求點E 的坐標;
(3)如圖2,連接DC 并延長交x 軸于點F,設(shè)P 為線段BF 上一動點(不與B、F 重合),過點P 作PQ∥BD 交直線BC 于點Q,將直線PQ 繞點P 沿順時針方向旋轉(zhuǎn)45°后,所得的直線交DF 于點R,連接QR.請直接寫出當△PQR 與△PFR 相似時點P 的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.
(1)填空:點A坐標為;拋物線的解析式為 .
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?
(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“雙十二”期間,A,B兩個超市開展促銷活動,活動方式如下:
A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;
B超市:購物金額打8折.
某學(xué)校計劃購買某品牌的籃球做獎品,該品牌的籃球在A,B兩個超市的標價相同.根據(jù)商場的活動方式:
(1)若一次性付款4200元購買這種籃球,則在B商場購買的數(shù)量比在A商場購買的數(shù)量多5個.請求出這種籃球的標價;
(2)學(xué)校計劃購買100個籃球,請你設(shè)計一個購買方案,使所需的費用最少.(直接寫出方案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com