【題目】如圖,點C是AB的中點,AD=CE,CD=BE.
(1)求證:△ACD≌△CBE;
(2)連接DE,求證:四邊形CBED是平行四邊形.
【答案】
(1)證明:∵點C是AB的中點,
∴AC=BC;在△ADC與△CEB中, ,
∴△ADC≌△CEB(SSS)
(2)證明:連接DE,如圖所示:
∵△ADC≌△CEB,
∴∠ACD=∠CBE,
∴CD∥BE,
又∵CD=BE,
∴四邊形CBED是平行四邊形.
【解析】(1)由SSS證明證明△ADC≌△CEB即可;(2)由全等三角形的性質(zhì)得出得到∠ACD=∠CBE,證出CD∥BE,即可得出結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用平行四邊形的判定的相關(guān)知識可以得到問題的答案,需要掌握兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線 分別與x軸、y軸交于點B、C,且與直線 交于點A.
(1)分別求出點A、B、C的坐標;
(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的函數(shù)表達式;
(3)在(2)的條件下,設(shè)P是射線CD上的點,在平面內(nèi)是否存在點Q,使以O(shè)、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當OD=AD=3時,這兩個二次函數(shù)的最大值之和等于( )
A.
B.
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(3,0),以A為圓心作⊙A與Y軸切于原點,與x軸的另一個交點為B,過B作⊙A的切線l.
(1)以直線l為對稱軸的拋物線過點A及點C(0,9),求此拋物線的解析式;
(2)拋物線與x軸的另一個交點為D,過D作⊙A的切線DE,E為切點,求此切線長;
(3)點F是切線DE上的一個動點,當△BFD與△EAD相似時,求出BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+ x+2與x軸交于點A,B,與y軸交于點C.
(1)試求A,B,C的坐標;
(2)將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD.
①求點D的坐標;
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請直接寫出所有滿足條件的P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(﹣4,6),(﹣1,4).
(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系;
(2)請畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(3)請在y軸上求作一點P,使△PB1C的周長最小,并寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】全面兩孩政策實施后,甲、乙兩個家庭有了各自的規(guī)劃,假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個男孩,準備再生一個孩子,則第二個孩子是女孩的概率是;
(2)乙家庭沒有孩子,準備生兩個孩子,求至少有一個孩子是女孩的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明隨機調(diào)查了若干市民租用公共自行車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題:
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖.
(3)如果騎自行車的平均速度為12km/h,請估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com