如圖,矩形紙片ABCD的邊AD=9,AB=3,將其折疊,使點(diǎn)D與點(diǎn)B重合,則折疊后DE的長與折痕EF的長分別為(  )
A.4,
10
B.5,
10
C.4,2
3
D.5,2
3

連接BD交EF于點(diǎn)O,連接DF.

根據(jù)折疊,知BD垂直平分EF.
根據(jù)ASA可以證明△DOE≌△BOF,
得OD=OB.
則四邊形BEDF是菱形.
設(shè)DE=x,則CF=9-x.
在直角三角形DCF中,根據(jù)勾股定理,得:x2=(9-x)2+9.
解得:x=5.
在直角三角形BCD中,根據(jù)勾股定理,得BD=3
10
,則OB=
3
2
10

在直角三角形BOF中,根據(jù)勾股定理,得OF=
25-22.5
=
10
2
,則EF=
10

故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,點(diǎn)O是AC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MNBC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF.那么當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在長方形ABCD中,E是AD的中點(diǎn),F(xiàn)是CE的中點(diǎn),若△BDF的面積為6平方厘米,則長方形ABCD的面積是______平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,十三個(gè)邊長為正整數(shù)的正方形紙片恰好拼成一個(gè)大矩形(其中有三個(gè)小正方形的邊長已標(biāo)出字母x,y,z).試求滿足上述條件的矩形的面積最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,利用四邊形的不穩(wěn)定性改變矩形ABCD的形狀,得到?A1BCD1,若?A1BCD1的面積是矩形ABCD面積的一半,則∠ABA1的度數(shù)是( 。
A.15°B.30°C.45°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

四邊形ABCD的對角線AC,BD相交于點(diǎn)O,且ADBC,AD=BC,如果補(bǔ)上下列條件中的,可以使四邊形ABCD為矩形(  )
A.AC⊥BDB.AB=ADC.AB=CDD.AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)A、點(diǎn)C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(10,4).若點(diǎn)D為OA的中點(diǎn),點(diǎn)P為邊BC上的一動(dòng)點(diǎn),則△OPD為等腰三角形時(shí)的點(diǎn)P的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:在矩形ABCD中,對角線AC、BD交于點(diǎn)O,AB=8cm,AD=10cm,PE⊥AC,垂足為E,PF⊥BD垂足為F,求PE+PF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知菱形ABCD,AE⊥CD,若AE=4,BC=5,則AC•BD=______.

查看答案和解析>>

同步練習(xí)冊答案