【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由;
(3)若AG=6,EG=2 ,求BE的長(zhǎng).
【答案】
(1)
證明:∵GE∥DF,
∴∠EGF=∠DFG.
∵由翻折的性質(zhì)可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG.
∴GD=DF.
∴DG=GE=DF=EF.
∴四邊形EFDG為菱形
(2)
解:EG2= GFAF.
理由:如圖1所示:連接DE,交AF于點(diǎn)O.
∵四邊形EFDG為菱形,
∴GF⊥DE,OG=OF= GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
∴△DOF∽△ADF.
∴ ,即DF2=FOAF.
∵FO= GF,DF=EG,
∴EG2= GFAF
(3)
解:如圖2所示:過點(diǎn)G作GH⊥DC,垂足為H.
∵EG2= GFAF,AG=6,EG=2 ,
∴20= FG(FG+6),整理得:FG2+6FG﹣40=0.
解得:FG=4,F(xiàn)G=﹣10(舍去).
∵DF=GE=2 ,AF=10,
∴AD= =4 .
∵GH⊥DC,AD⊥DC,
∴GH∥AD.
∴△FGH∽△FAD.
∴ ,即 = .
∴GH= .
∴BE=AD﹣GH=4 ﹣ =
【解析】(1)先依據(jù)翻折的性質(zhì)和平行線的性質(zhì)證明∠DGF=∠DFG,從而得到GD=DF,接下來依據(jù)翻折的性質(zhì)可證明DG=GE=DF=EF;(2)連接DE,交AF于點(diǎn)O.由菱形的性質(zhì)可知GF⊥DE,OG=OF= GF,接下來,證明△DOF∽△ADF,由相似三角形的性質(zhì)可證明DF2=FOAF,于是可得到GE、AF、FG的數(shù)量關(guān)系;(3)過點(diǎn)G作GH⊥DC,垂足為H.利用(2)的結(jié)論可求得FG=4,然后再△ADF中依據(jù)勾股定理可求得AD的長(zhǎng),然后再證明△FGH∽△FAD,利用相似三角形的性質(zhì)可求得GH的長(zhǎng),最后依據(jù)BE=AD﹣GH求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點(diǎn),過點(diǎn)C作AB的平行線交AE的延長(zhǎng)線于點(diǎn)F,連接BF.
(1)求證:CF=AD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過點(diǎn)B的切線AE與CD的延長(zhǎng)線交于點(diǎn)A,OE∥BD,交BC于點(diǎn)F,交AB于點(diǎn)E.
(1)求證:∠E=∠C;
(2)若⊙O的半徑為3,AD=2,試求AE的長(zhǎng);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題
(1)問題發(fā)現(xiàn):
如圖1,在正方形ABCD中,點(diǎn)E、F分別是邊BC、AB上的點(diǎn),且CE=BF,連接DE,過點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C,請(qǐng)判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是 .
(2)拓展探究:
如圖2,若點(diǎn)E、F分別是CB、BA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)出判斷判斷予以證明;
(3)類比延伸:
如圖3,若點(diǎn)E、F分別是BC、AB延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.
(1)求證:AB=AC;
(2)若AD=2 ,∠DAC=30°,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的四個(gè)頂點(diǎn)在坐標(biāo)軸上,A點(diǎn)坐標(biāo)為(3,0),假設(shè)有甲、乙兩個(gè)物體分別由點(diǎn)A同時(shí)出發(fā),沿正方形ABCD的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針方向勻速運(yùn)動(dòng),物體乙按順時(shí)針方向勻速運(yùn)動(dòng),如果甲物體12秒鐘可環(huán)繞一周回到A點(diǎn),乙物體24秒鐘可環(huán)繞一周回到A點(diǎn),則兩個(gè)物體運(yùn)動(dòng)后的第2017次相遇地點(diǎn)的坐標(biāo)是( )
A.(3,0)
B.(﹣1,2)
C.(﹣3,0)
D.(﹣1,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,矩形ABCD關(guān)于y軸對(duì)稱,點(diǎn)A,D在x軸上,BC交y軸于點(diǎn)F,E是OF的中點(diǎn),拋物線y=ax2+bx+c經(jīng)過B,E,C三點(diǎn),已知點(diǎn)B(﹣2,﹣2),解答下列問題:
(1)填空:a= , b= , c= .
(2)如圖2,這P是上述拋物線上一點(diǎn),連接PF并延長(zhǎng)交拋物線于另外一點(diǎn)Q,PM⊥x軸于M,QN⊥x軸于N.
①求證:PM+QN=PQ;
②若PQ=m,S四邊形PMNQ= m2 , 求直線PQ對(duì)應(yīng)的一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:運(yùn)用“同一圖形的面積相等”可以證明一些含有線段的等式成立,這種解決問題的方法我們稱之為面積法.如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,點(diǎn)M為底邊BC上的任意一點(diǎn),點(diǎn)M到腰AB、AC的距離分別為h1、h2 , 連接AM,利用S△ABC=S△ABM+S△ACM , 可以得出結(jié)論:h=h1+h2 .
類比探究:在圖1中,當(dāng)點(diǎn)M在BC的延長(zhǎng)線上時(shí),猜想h、h1、h2之間的數(shù)量關(guān)系并證明你的結(jié)論.
拓展應(yīng)用:如圖2,在平面直角坐標(biāo)系中,有兩條直線l1:y= x+3,l2:y=﹣3x+3,
若l2上一點(diǎn)M到l1的距離是1,試運(yùn)用“閱讀理解”和“類比探究”中獲得的結(jié)論,求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題
(1)已知4x=3y,求代數(shù)式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.
(2)計(jì)算:π0+2﹣1﹣ ﹣|﹣ |.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com