【題目】計算下列各題
(1) ﹣1=
(2)2x2+3=7x.
【答案】
(1)解:去分母得:x2+2x﹣x2+4=8,
解得:x=2,
檢驗:將x=2代入最簡公分母(x+2)(x﹣2)=0,
則x=2是原方程的增根,
故原方程無解;
(2)解:∵2x2+3=7x,
∴2x2﹣7x+3=0,
∴(2x﹣1)(x﹣3)=0,
∴2x﹣1=0或x﹣3=0,
∴x1= ,x2=3.
【解析】(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解;(2)移項后得到2x2﹣7x+3=0,然后分解因式得到(2x﹣1)(x﹣3)=0,即可得出兩個一元一次方程,求出方程的解即可.
【考點精析】解答此題的關(guān)鍵在于理解去分母法的相關(guān)知識,掌握先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O為AB邊上一點,⊙O交AB于E,F(xiàn)兩點,BC切⊙O于點D,且CD= EF=1.
(1)求證:⊙O與AC相切;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水龍頭關(guān)閉不嚴(yán)會造成滴水,容器內(nèi)盛水量w(L)與滴水時間t(h)的關(guān)系用可以顯示水量的容器做如圖1的試驗,并根據(jù)試驗數(shù)據(jù)繪制出如圖2的函數(shù)圖象,結(jié)合圖象解答下列問題.
(1)容器內(nèi)原有水多少升?
(2)求w與t之間的函數(shù)關(guān)系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標(biāo)為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)若拋物線上有一動點P,使三角形ABP的面積為6,求P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為參加學(xué)校的“我愛古詩詞”知識競賽,小王所在班級組織了一次古詩詞知識測試,并將全班同學(xué)的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計,以下是根據(jù)這次測試成績制作的不完整的頻率分布表和頻率分布直方圖.
組別 | 分組 | 頻數(shù) | 頻率 |
1 | 50≤x<60 | 9 | 0.18 |
2 | 60≤x<70 | a | |
3 | 70≤x<80 | 20 | 0.40 |
4 | 80≤x<90 | 0.08 | |
5 | 90≤x≤100 | 2 | b |
合計 |
請根據(jù)以上頻率分布表和頻率分布直方圖,回答下列問題:
(1)求出a、b、x、y的值;
(2)若要從小明、小敏等五位成績優(yōu)秀的同學(xué)中隨機(jī)選取兩位參加競賽,請用“列表法”或“樹狀圖”求出小明、小敏同時被選中的概率.(注:五位同學(xué)請用A、B、C、D、E表示,其中小明為A,小敏為B)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB、CD為⊙O的直徑,弦BE交CD于點F,連接DE交AB于點G,GO=GD.
(1)如圖1,求證:DE=DF;
(2)如圖2,作弦AK∥DC,AK交BE于點N,連接CK,求證:四邊形KNFC為平行四邊形;
(3)如圖3,作弦CH,連接DH,∠CDH=3∠EDH,CH=2 ,BE=4 ,求DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個球是黑球的概率是 ,求從袋中取出黑球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關(guān)系.
[探究發(fā)現(xiàn)]
小聰同學(xué)利用圖形變換,將△CAD繞點C逆時針旋轉(zhuǎn)90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.
根據(jù)“邊角邊”,可證△CEH≌ , 得EH=ED.
在Rt△HBE中,由定理,可得BH2+EB2=EH2 , 由BH=AD,可得AD、DE、EB之間的等量關(guān)系是 。
[實踐運用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);
(2)在(1)條件下,連接BD,分別交AE、AF于點M、N,若BE=2,DF=3,BM=2,運用小聰同學(xué)探究的結(jié)論,求正方形的邊長及MN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com