【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,﹣1)兩點.
(1)求反比例函數(shù)與一次函數(shù)的函數(shù)關系式;
(2)求△AOB的面積;
(3)我們知道,一次函數(shù)y=x﹣1的圖象可以由正比例函數(shù)y=x的圖象向下平移1個長度單位得到.試結合平移解決下列問題:在(1)的條件下,請你試探究:
①函數(shù)y= 的圖象可以由y= 的圖象經(jīng)過怎樣的平移得到?
②點P(x1 , y1)、Q (x2 , y2) 在函數(shù)y= 的圖象上,x1<x2 . 試比較y1與y2的大。
【答案】
(1)解:∵點A(1,3)在反比例函數(shù)y= 的圖象上,
∴k=1×3=3,
∴反比例函數(shù)的解析式為y= ;
∵點B(n,﹣1)在反比例函數(shù)y= 的圖象上,
∴點B的坐標為(﹣3,﹣1).
∵點A(1,3),點B(﹣3,﹣1),
∴利用待定系數(shù)法即可得出直線AB的解析式為y=x+2
(2)解:當y=0時,有x+2=0,
解得:x=﹣2,
∴直線AB與x軸的交點坐標為(﹣2,0),
∴S△AOB= ×[0﹣(﹣2)]×[3﹣(﹣1)]=4
(3)解:①∵y= = = ﹣2,
∴函數(shù)y= 的圖象可以由y= 的圖象向右平移2個單位,向下平移2個單位得到.
②∵反比例函數(shù)y= 的圖象在每個象限內(nèi)都是單調(diào)遞減,
當x1<x2<2或2<x1<x2時,y1>y2;
當x1<2<x2時,y1<y2.
【解析】(1)有點A的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出反比例函數(shù)解析式,進而即可求出點B的坐標,根據(jù)點A、B的坐標利用待定系數(shù)法即可求出直線AB的解析式;(2)根據(jù)一次函數(shù)圖象上點的坐標特征求出直線AB與x軸的交點坐標,利用三角形的面積公式結合A、B點的縱坐標即可得出△AOB的面積;(3)①將反比例函數(shù)解析式進行化簡,再結合平移的性質(zhì)即可得出結論;②根據(jù)反比例函數(shù)在每個象限內(nèi)單調(diào)遞減,即可得出結論.
【考點精析】根據(jù)題目的已知條件,利用坐標與圖形變化-平移的相關知識可以得到問題的答案,需要掌握新圖形的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點;連接各組對應點的線段平行且相等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡,再求代數(shù)式的值:( ﹣ )÷ ,其中sin230°<a<tan260°,請你取一個合適的整數(shù)作為a的值代入求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次時裝表演會預算中票價定為每張100元,容納觀眾人數(shù)不超過2000人,毛利潤y(百元)關于觀眾人數(shù)x(百人)之間的函數(shù)圖象如圖所示,當觀眾人數(shù)超過1000人時,表演會組織者需向保險公司繳納定額平安保險5000(不列入成本費用),請解答下列問題:
(1)當觀眾不超過1000人時,毛利潤y關于觀眾人數(shù)x的函數(shù)解析式和成本費用s(百元)關于觀眾人數(shù)x(百人)的函數(shù)解析式;
(2)若要使這次表演會獲得36000元的毛利潤,那么需售出多少張門票需支付成本費用多少元(當觀眾人數(shù)不超過1000人時,表演會的毛利潤=門票收入﹣成本費用;當觀眾人數(shù)超過1000人時,表演會的毛利潤=門票收入﹣成本費用﹣平安保險費).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線 (k≠0)上.將正方形沿x軸負方向平移a個單位長度后,點C恰好落在該雙曲線上,則a的值是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關系.
猜想結論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以OA1對角線為邊作正方形OA1A2B1 , 再以正方形的對角線OA2作正方形OA1A2B1 , …,依此規(guī)律,則點A8的坐標是( )
A.(﹣8,0)
B.(0,8)
C.(0,8 )
D.(0,16)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH= BD
其中正確結論的為(請將所有正確的序號都填上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某品牌電風扇銷售量的情況,對某商場5月份該品牌甲、乙、丙三種型號的電風扇銷售量進行統(tǒng)計,繪制如下兩個統(tǒng)計圖(均不完整).請你結合圖中的信息,解答下列問題:
(1)該商場5月份售出這種品牌的電風扇共多少臺?
(2)若該商場計劃訂購這三種型號的電風扇共2000臺,根據(jù)5月份銷售量的情況,求該商場應訂購丙種型號電風扇多少臺比較合理?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com