在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關于點B1成中心對稱,再作△B2A3B3與△B2A2B1關于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是( 。
A. (4n﹣1,) B. (2n﹣1,) C. (4n+1,) D. (2n+1,)
C 解:∵△OA1B1是邊長為2的等邊三角形,
∴A1的坐標為(1,),B1的坐標為(2,0),
∵△B2A2B1與△OA1B1關于點B1成中心對稱,
∴點A2與點A1關于點B1成中心對稱,
∵2×2﹣1=3,2×0﹣=﹣,
∴點A2的坐標是(3,﹣),
∵△B2A3B3與△B2A2B1關于點B2成中心對稱,
∴點A3與點A2關于點B2成中心對稱,
∵2×4﹣3=5,2×0﹣(﹣)=,
∴點A3的坐標是(5,),
∵△B3A4B4與△B3A3B2關于點B3成中心對稱,
∴點A4與點A3關于點B3成中心對稱,
∵2×6﹣5=7,2×0﹣=﹣,
∴點A4的坐標是(7,﹣),
…,
∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,
∴An的橫坐標是2n﹣1,A2n+1的橫坐標是2(2n+1)﹣1=4n+1,
∵當n為奇數(shù)時,An的縱坐標是,當n為偶數(shù)時,An的縱坐標是﹣,
∴頂點A2n+1的縱坐標是,
∴△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是(4n+1,).
科目:初中數(shù)學 來源: 題型:
定義:底與腰的比是的等腰三角形叫做黃金等腰三角形.
如圖,已知△ABC中,AB=BC,∠C=36°,BA1平分∠ABC交AC于A1.
(1)證明:AB2=AA1•AC;
(2)探究:△ABC是否為黃金等腰三角形?請說明理由;(提示:此處不妨設AC=1)
(3)應用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此規(guī)律操作下去,用含a,n的代數(shù)式表示An﹣1An.(n為大于1的整數(shù),直接回答,不必說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在△ABC中,若角A,B滿足|cosA﹣|+(1﹣tanB)2=0,則∠C的大小是( 。
A.45° B. 60° C. 75° D. 105°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
有六張完全相同的卡片,其正面分別標有數(shù)字:﹣2,,π,0,,3.,將它們背面朝上洗勻后,從中隨機抽取一張卡片,則其正面的數(shù)字為無理數(shù)的概率是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
現(xiàn)在的青少年由于沉迷電視、手機、網(wǎng)絡游戲等,視力日漸減退,某市為了解學生的視力變化情況,從全市九年級隨機抽取了1500名學生,統(tǒng)計了每個人連續(xù)三年視力檢查的結(jié)果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計圖,并對視力下降的主要因素進行調(diào)查,制成扇形統(tǒng)計圖.
解答下列問題:
(1)圖中D所在扇形的圓心角度數(shù)為 54° ;
(2)若2015年全市共有30000名九年級學生,請你估計視力在4.9以下的學生約有多少名?
(3)根據(jù)扇形統(tǒng)計圖信息,你覺得中學生應該如何保護視力?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
小明到超市買練習本,超市正在打折促銷:購買10本以上,從第11本開始按標價打折優(yōu)惠,買練習本所花費的錢數(shù)y(元)與練習本的個數(shù)x(本)之間的關系如圖所示,那么在這個超市買10本以上的練習本優(yōu)惠折扣是 折.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、B兩地相距20千米,甲、乙兩人都從A地去B地,圖中和分別表示甲、乙兩人所走路程(千米)與時刻(小時)之間的關系。下列說法:乙晚出發(fā)1小時;乙出發(fā)3小時后追上甲;甲的速度是4千米/小時;乙先到達B地。其中正確的個數(shù)是( )
A.1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com