【題目】在直角坐標系中,O為坐標原點,已知點A(1,2),在y軸的正半軸上確定點P,使△AOP為等腰三角形,則點P的坐標為 .
【答案】(0, ),(0,4),(0, )
【解析】解:有三種情況:①以O為圓心,以OA為半徑畫弧交Y軸于D,則OA=OD= = ; ∴D(0, );
②以A為圓心,以OA為半徑畫弧交Y軸于P,OP=4,
∴P(0,4);
③作OA的垂直平分線交Y軸于C,則AC=OC,
由勾股定理得:OC=AC= ,
∴OC= ,
∴C(0, );
所以答案是:(0, ),(0,4),(0, ).
【考點精析】解答此題的關鍵在于理解線段垂直平分線的性質的相關知識,掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等,以及對等腰三角形的性質的理解,了解等腰三角形的兩個底角相等(簡稱:等邊對等角).
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,M是AD邊的中點,N是AB邊上的一動點,將△AMN沿MN所在直線翻折得到△A′MN,連接A′C,則A′C長度的最小值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知反比例函數的圖象的一支位于第一象限.
(1)判斷該函數圖象的另一支所在的象限,并求m的取值范圍;
(2)如圖,O為坐標原點,點A在該反比例函數位于第一象限的圖象上,點B與點A關于軸對稱,若△OAB的面積為6,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以下條件不能判別四邊形ABCD是矩形的是( )
A.AB=CD,AD=BC,∠A=90°
B.OA=OB=OC=OD
C.AB=CD,AB∥CD,AC=BD
D.AB=CD,AB∥CD,OA=OC,OB=OD
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com