A. | ①②④ | B. | ①③⑤ | C. | ③④⑤ | D. | ①②③ |
分析 由中點(diǎn)的性質(zhì)可得出EF∥CD,且EF=$\frac{1}{2}$CD=BG,結(jié)合平行即可證得②結(jié)論成立,由BD=2BC得出BO=BC,即而得出BE⊥AC,由中線的性質(zhì)可知GP∥BE,且GP=$\frac{1}{2}$BE,AO=EO,通過證△APG≌△EPG得出AG=EG=EF得出①成立,再證△GPE≌△FPE得出④成立,此題得解.
解答 解:令GF和AC的交點(diǎn)為點(diǎn)P,如圖
∵E、F分別是OC、OD的中點(diǎn),
∴EF∥CD,且EF=$\frac{1}{2}$CD,
∵四邊形ABCD為平行四邊形,
∴AB∥CD,且AB=CD,
∴∠FEG=∠BGE(兩直線平行,內(nèi)錯角相等),
∵點(diǎn)G為AB的中點(diǎn),
∴BG=$\frac{1}{2}$AB=$\frac{1}{2}$CD=FE,
在△EFG和△GBE中,$\left\{\begin{array}{l}{BG=FE}\\{∠FEG=∠BGE}\\{GE=EG}\end{array}\right.$,
∴△EFG≌△GBE(SAS),即②成立,
∴∠EGF=∠GEB,
∴GF∥BE(內(nèi)錯角相等,兩直線平行),
∵BD=2BC,點(diǎn)O為平行四邊形對角線交點(diǎn),
∴BO=$\frac{1}{2}$BD=BC,
∵E為OC中點(diǎn),
∴BE⊥OC,
∴GP⊥AC,
∴∠APG=∠EPG=90°
∵GP∥BE,G為AB中點(diǎn),
∴P為AE中點(diǎn),即AP=PE,且GP=$\frac{1}{2}$BE,
在△APG和△EGP中,$\left\{\begin{array}{l}{AP=EP}\\{∠APG=∠EPG}\\{GP=GP}\end{array}\right.$,
∴△APG≌△EPG(SAS),
∴AG=EG=$\frac{1}{2}$AB,
∴EG=EF,即①成立,
∵EF∥BG,GF∥BE,
∴四邊形BGFE為平行四邊形,
∴GF=BE,
∵GP=$\frac{1}{2}$BE=$\frac{1}{2}$GF,
∴GP=FP,
∵GF⊥AC,
∴∠GPE=∠FPE=90°
在△GPE和△FPE中,$\left\{\begin{array}{l}{GP=FP}\\{∠GPE=∠FPE}\\{EP=EP}\end{array}\right.$,
∴△GPE≌△FPE(SAS),
∴∠GEP=∠FEP,
∴EA平分∠GEF,即④成立.
故選A.
點(diǎn)評 本題考查了全等三角形的判定與性質(zhì)、中位線定理以及平行線的性質(zhì)定理,解題的關(guān)鍵是利用中位線,尋找等量關(guān)系,借助于證明全等三角形找到邊角相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com